
Transcript of Episode #865

Port Knocking

Description: This week we examine a critical Java framework flaw that's been named
"Spring4Shell" because it's mildly reminiscent of Java's recent "Log4j" problem. We'll also
take a look at the popular QNAP NAS devices and several recent security troubles there.
Sophos has got themselves an attention-grabbing, must-patch-now 9.8 CVSS
vulnerability, and it didn't take long (10 days) for the theoretical Browser-in-the-Browser
spoof to become non-theoretical. There's more worrisome news on the NPM supply-chain
package manager exploitation nightmare, the FinFisher spyware firm happily bites the
dust, and some of the young hackers forming the Lapsus$ gang have been identified.

High quality (64 kbps) mp3 audio file URL: http://media.GRC.com/sn/SN-865.mp3
Quarter size (16 kbps) mp3 audio file URL: http://media.GRC.com/sn/sn-865-lq.mp3

Squarely in the doghouse this week is Wyze, whose super-popular webcams have problems which are
just as serious as those of the company itself. And, oh, the authentication bypass details, which I'll share,
are so wonderful! Then, after a bit of closing-the-loop feedback with our listeners, I want to talk about
and put the idea of "Strong Service Concealment" on everyone's radar. "Port Knocking" is not a new

idea by any means; but it is extremely clever, cool and useful. In today's world, there's more reason than
ever for ports and the services behind them that are not actively soliciting public traffic to be kept

completely hidden. There are a number of ways this can be done which are very cool.

SHOW TEASE: It's time for Security Now!. Steve Gibson is here. We've got a new Java framework
flaw called Spring4Shell to talk about. Yes, Steve's going to issue a slight spanking to Wyze, their three-

year flaw in their cameras unpatched until January. How did that happen? And then a new way to log
into servers. It's a lot easier. It's called "port knocking." But is it safe? Steve explains all next on Security

Now!.

Leo Laporte: This is Security Now! with Steve Gibson, Episode 865, recorded
Tuesday, April 5th, 2022: Port Knocking.

It's time for Security Now!, the show where we cover your security, privacy, and
safety online with Steve Gibson of the Gibson Research Corporation. Hello, Steve.
I'm coming up with some sort of "Let's get ready to secure" or something. I don't
know.

Steve Gibson: Yes, just before we hit 999 we'll come up with a slogan.

Leo: That's right. Well, we have a slogan: "What could possibly go wrong?"

Page 1 of 24Security Now! Transcript of Episode #865

Steve: Yes.

Leo: That's a great slogan.

Steve: I think that's probably the best thing ever, yeah. So we're at, oh, are we at 864
or 865? I've got 864 in the show notes, at the top of the show notes.

Leo: Oh, I don't know. It says 865 in all of my stuff.

Steve: Good. I think I just didn't update the title page or the title of the show notes. So
everyone, ignore that. It is definitely April 5th, though. That I'm sure about. We're going
to examine a critical Java framework flaw that's been named of course Spring4Shell
because it's mildly reminiscent of Java's recent Log4j problem, or Log4Shell problem.
We'll also take a look at the popular QNAP NAS devices and several recent security
troubles there. Sophos has earned themselves an attention-grabbing, must-patch-now
9.8 CVSS vulnerability. And it didn't take long, like about 10 days, for that theoretical
browser-in-the-browser spoof that we talked about to become non-theoretical. It's now in
use.

There's more worrisome news on the NPM supply chain package manager exploitation
front nightmare. The FinFisher spyware firm happily bites the dust. And some of the
young hackers forming the Lapsus$ gang have been identified. Squarely in the doghouse
this week is Wyze, whose super-popular webcams have problems which are just as
serious as those of the company itself, it seems, and oh my god. The authentication
bypass details which I will share are so wonderful.

Then, after a little bit of closing-the-loop feedback from our listeners, I want to talk about
and put the idea of strong service concealment on everyone's radar, thus the title for
today's podcast is "Port Knocking." It's not a new idea by any means. Articles and
conversations about it typically have dates like 2008. But the concept is really clever, I
think. I've always thought it was cool and useful. And in today's world, there's I think
more reason than ever for ports and the services behind them that are not actively
soliciting public traffic, like a public web server does, things that are like you want to log
onto your own NAS sort of thing.

If you don't need to publicly expose ports, there's just so much reason to keep them
completely locked and hidden. And it turns out there are a number of ways this can be
done. Linux now has a port knocking technology built into it, DD-WRT, OpenWRT. There's
a lot of ways to do this now. So I just kind of wanted to talk about this, the idea that
there is a way for you to be remote from your location, have no exposed open ports, yet
by knocking in a certain way have the ports opened only to you at your IP, and only for
as long as you want them to be. So I think an overall really interesting podcast for our
listeners.

Leo: I hear you knocking, but you can't come in. Actually, if it's me knocking, let me
in; right? It's okay. Picture of the Week?

Steve: Yeah. This was one that I had in the collection. It's just sort of fun. Anyone who
has actually spent time programming will probably get a sense for this. The picture just
depicts your kind of typical programmer dude. We've got some energy drink cans like on

Page 2 of 24Security Now! Transcript of Episode #865

the desk, a coffee mug that looks like it's got some coffee dripping down the sides, some
crumbled up pieces of paper. Of course the ever - you have to have yellow Post-it notes
like stuck on...

Leo: Everywhere, yeah.

Steve: ...the margins of your monitor in order to qualify.

Leo: And crumpled up paper, yeah, yeah. And energy drinks, yeah, yeah.

Steve: Yeah. So at this moment we catch him raising both fists in the air, celebrating.
He's like, got some success. And he says: "Wow, a different error message. Finally some
progress!"

Leo: We made progress.

Steve: It's like, he's been like, what is wrong? No matter what he tries, just keep getting
the same error message. Oh, look, it just changed. Okay, we're getting close.

Leo: I've got another one. I don't know if you ever get this. But I'm still working on
the Advent of Code problems, you know, off and on. They're really fun programming
problems.

Steve: Oh, my goodness, yeah, yeah.

Leo: Yeah, really, this one's - Day 19 was a challenge. But...

Steve: Well, and Leo, I've always told people the best way to learn a language is to use
it to solve problems.

Leo: Yeah. And these are hard problems. So something worked by accident. You
ever have that happen? Where I went, this shouldn't work, but it does. And then I
tried it with different problem sets and different - and it works. I'm not sure why it
works.

Steve: No, I've had that. In fact there have been times when I've written a huge amount
of new, like, SpinRite code, for example. And it assembles correctly, no syntax errors,
and then I launch it, and it goes. And it's like, I'm not sure I trust it because...

Leo: It's too easy.

Steve: I have to pay a bigger price in order to have it all work correctly.

Page 3 of 24Security Now! Transcript of Episode #865

Leo: Absolutely. Absolutely.

Steve: Well, last week we noted Chrome's second zero-day of the year and titled the
podcast, last week's podcast, "Targeted Exploitation," with information thanks to
Google's Threat Analysis Group research, which documented the details of the
exploitation of Chrome's first zero-day of the year. This week we switched to Apple, who
last Thursday pushed out patches for its own fourth and fifth zero-days of the year. Last
year Google had a total of 16 for Chrome, and Apple was at 12 for the year. So for Apple
to be already at five by the end of the first quarter suggests a run rate that might break
both of their 2021 totals. We'll see how that goes.

Anyway, the fourth and fifth patches which, again, zero-days, cover iPhones, iPad, and
Macs. And these are true zero-day flaws since in their typically obscure way they said
that the issues "may have been actively exploited." Uh-huh. May? Okay, so why the
emergency? I mean, they, like, this was a "Get this out now" level patch. Anyway, in any
event, we have an out-of-bounds write issue in the Intel graphics driver that allows apps
to read kernel memory, and that's never what you want; and an out-of-bounds read
issue in the Apple AVD, that's the Audio Video Media Decoder, that will enable apps to
execute arbitrary code with kernel privileges. Both bugs were reported by anonymous
researchers and resulted in iOS and iPad OS both moving to 15.4.1, and macOS
Monterey to 12.3.1. The first flaw was fixed by improving input validation is all they said,
and the second by improving bounds checking. So okay. We'll see how Apple goes with
the rest of the year.

Another worrisome vulnerability in a Java framework has surfaced. The cybersecurity
firm Praetorian said that the flaw impacts the "Spring Core" on the Java Development Kit
(JDK) versions 9 and later. And this is odd, too. It's a bypass for another much, and I
mean much older vulnerability from way back in 2010. That one was tracked as 2010-
1622. And yes, only four digits. Those quaint days when we only needed four digits to
number our CVEs.

Leo: There are only 10,000 security flaws.

Steve: Yeah. What happened to that? If exploited, this bypass enables an
unauthenticated attacker to execute arbitrary code on the target system, making it, of
course, a remote code execution, RCE. And unfortunately, a Chinese security researcher
briefly posted a working proof-of-concept for this exploit to GitHub before deleting the
account. But as we know, it doesn't take long. Nothing remains hidden on the Internet.
So indeed, the proof-of-concept code was quickly shared in other repositories and tested
by security researchers, who confirmed it was a legitimate exploit for this new,
potentially severe, and previously unknown Java vulnerability.

Leo: So it had been patched in 2010, but there was another way to get to it or
something.

Steve: Yes, exactly. So probably not fixed the way we would have wished.

Leo: Right.

Page 4 of 24Security Now! Transcript of Episode #865

Steve: Which is to say it would stay fixed. This was a bypass around the way it was
fixed. So Spring is a software framework for building Java applications, including web
apps on top of the Java EE, the Enterprise Edition platform. Researchers who've looked at
it have said that: "In certain configurations, exploitation of this issue is straightforward,
as it only requires an attacker to send a crafted HTTP" - you know, a standard web query
to a vulnerable system. "However, exploitation of different configurations will require the
attacker to do a little additional research to find payloads that will be effective."

So in that sense it does feel like the Log4j, which as we know turned out not to be like
the end of the world because it wasn't just drop-dead simple for script kiddie weenies to
massively exploit. It really required more expertise. The Spring framework's maintainers,
Spring.io, which is a subsidiary of VMware, last Friday released emergency patches to fix
this so-called, and it actually has been called "Spring4Shell." It's a zero-day RCE. Well,
that's what they're calling it. And I was trying to decide whether this would really be a
zero-day if it wasn't being actively exploited in the wild against victims. We know that
Microsoft has their own definition for zero-day. Normally we reserve the term, and we're
trying not to overuse it by making it overly broad, to be like, whoops, we learned about
this because we saw it being used. That's clearly a zero-day.

So this is kind of a gray area because it's been - the exploit has been publicly disclosed.
And I imagine that in the next week or two I'll be saying, oh, yeah, it went from public
disclosure to weaponized. But anyway, I think that since a public proof-of-concept exploit
exists before a patch is ready, and actually a patch just happened, but certainly the proof
of concept has existed for some time, it probably qualifies as a zero-day.

There was also some confusion because two other related vulnerabilities in that same
Spring framework were also disclosed last week. There was a DoS vulnerability, meaning
you can crash the thing, and the Spring Cloud expression resource access vulnerability,
and I didn't dig into those because they've been patched, and it's like, okay. And they're
unrelated to this one.

So there' also been some questioning about just how bad this RCE really is. The concern
is that it is in use by enterprises for all kinds of their own custom server things, which
means that it's - who knows what's wrong with any particular enterprise's
implementation? After an independent analysis, Flashpoint said: "Current information
suggests in order to exploit the vulnerability, attackers will have to locate and identify
web app instances that actually use the" - and here it is - "the DeserializationUtils,
something already known by developers to be dangerous." Okay. But that doesn't mean
developers aren't using them because they're there; right? It's an API. Oh, look, this
does what I want.

So again, it's not like developers are nearly as security focused as we are, and the group
listening to this podcast is. And we've talked a lot about the dangers of deserialization.
Java is an object-oriented language, which means that an object is a complex, or at least
can be, typically is a complex data structure. So how do you store such a thing? The way
you store it is you serialize the object into a byte stream, you know, a blob, which you
then store. And in order to later reconstitute the object into a form that Java can use it,
you need to deserialize the blob. And a deserializer is inherently an interpreter of the
byte stream. And as we know, naive interpreters are written to assume that they will
only ever receive a valid deserialization stream to deserialize.

In fact, in an interesting twist, we're going to see that this Wyze cam authentication flaw
is sort of like that. The guys that designed the handshake just assumed you'd be a valid
handshaker. But no. Anyway, the security firm Rapid7 said that despite the public
availability of proof-of-concept exploits, "it's currently unclear which real-world
applications use the vulnerable functionality." Which is really just to say we don't yet.
This just happened. So we need exploits in order to - we need actually to have some

Page 5 of 24Security Now! Transcript of Episode #865

problems before we know. And they said: "Configuration and JRE version may also be
significant factors in exploitability and the likelihood of widespread exploitation."

However, CERT CC's oft-quoted vulnerability analyst Will Dormann tweeted, he said: "The
Spring4Shell exploit in the wild appears to work against the stock 'Handling Form
Submission' sample code from Spring.io. If the sample code," he says, "is vulnerable," he
said, "then I suspect there are indeed real-world apps out there that are also vulnerable
to remote code execution." And I think is logic is exactly right. The developers, again,
they're just going to take the sample code, which is obviously using the deserialize utils,
and like tweak it, change the name to their company and whatever. So the flaw was
assigned a CVE with a CVSS of 9.8. So that's meant to grab everyone's attention.

And yesterday, so Monday, VMware published security updates to remove the flaw from
their Spring.io subsidiary's code. But as we also know, publishing the update is different
from having it deployed on a server that's out in the field, and this is all just very fresh.
So as I said, I expect in a couple weeks, much as we'll be talking about the exploitation
of the browser and the browser flaw that was theoretical two weeks ago, not anymore.
So I think the same thing will probably be happening here.

Between the initial discovery of the vulnerability and yesterday's patch publication,
exploitation of the vulnerability where possible appears to have taken off at least as
much for the CVE to get a 9.8. So it's considered to be of critical importance to anyone
using this Spring framework. If you're responsible for it, or you know that your
organization uses it, definitely go get VMware's update and fix this. The framework is of
the MVC style, the Model View Controller approach, and also Spring WebFlux apps
running on JDK 9 and later are vulnerable. So definitely worth doing.

Okay. We recently talked about the denial-of-service bug that Tavis Ormandy and
Chrome's TLS guy together worked to discover in the OpenSSL library. Remember that
that's the one which results in an infinite loop and essentially processor capture when
processing client certs that have been deliberately manipulated to use specific elliptic
curve crypto parameters.

Among the many companies whose products can likely be hung when they receive such a
maliciously crafted client cert is the Taiwanese company QNAP, which last week revealed
that a selected number of its network-attached storage appliances were in fact vulnerable
to this OpenSSL problem. Last Tuesday their advisory said: "An infinite loop vulnerability
in OpenSSL has been reported to affect certain QNAP NAS. If exploited, the vulnerability
allows attackers to conduct denial-of-service attacks." So, you know, that's not the worst
of all possible outcomes. Yes, your NAS goes down. But it doesn't go down in a way that
lets any bad guys get in. So okay. It sort of sacrifices itself.

I have a list of the affected QTS and QuTS versions, but QNAP doesn't yet have any
patches available anyway. The good news is, as I said, the only thing an attacker can do
is to hang your NAS, which you then reboot, and it's back up until they hang it again.
And they can only do that if TLS connections are being accepted from random IPs out on
the public Internet. And everyone knows that's never a good idea; right?

QNAP keeps being somewhat of a mixed blessing. As I've looked through some of the
back-and-forth conversations that surround its various problems, I see that its users
generally love their devices, despite them having had more than their share of security
troubles even just this year. I mean, we've been talking about QNAP vulnerabilities for
years. QNAP is currently working to catch up to the OpenSSL DoS flaw which is only a
couple weeks old, but they're also still working to patch that recent "Dirty Pipe" Linux
kernel flaw from earlier in March, which also currently has no mitigation on QNAP's NAS
devices.

Page 6 of 24Security Now! Transcript of Episode #865

The good news there is that at least it's only a local privilege escalation vulnerability. On
the other hand, if you're in a big enterprise, and you're not able to trust all the people on
the inside of your network, the fact that it's only local doesn't provide much comfort. And
it's not QNAP's fault about the OpenSSL side, at least. Well, actually even this Dirty Pipe
because both of these problems arise from the Linux kernel that it's built on. So
everybody who was using the Linux kernel with those problems would have been
subjected to these potential vulnerabilities.

But more than that, attackers have been pummeling QNAP devices all year with both
ransomware and brute-force attacks to the point that the brute-force attacks prompted
QNAP to urge its own customers to remove their Internet-exposed NAS devices from the
Internet. In late January, QNAP forced out, pushed an unexpected and not entirely
welcome update to its customers' NAS devices after warning them that the DeadBolt
ransomware was mounting an offensive aimed at QNAP's users. So on top of everything
else these users are targets. And just two weeks ago reports surfaced that DeadBolt, the
DeadBolt ransomware, was at it again in a new wave of attacks against QNAP.

And last August, two vulnerabilities that could result in remote code execution and
denial-of-service respectively prompted emergency patches by QNAP. Now, interestingly,
this broader topic, and I think this is probably what made me think of it actually, of
today's topic, the broader topic of the dangers of public port exposure, which QNAP
perfectly evidences, serves as a perfect lead-in to today's discussion of Port Knocking,
the idea being there is a way, and it's hosted on Linux, so QNAP could use it, of
completely blinding the public Internet to the presence of open QNAP services, except to
people who know the secret knock, which we'll be talking about later, both pros and
cons, because port knocking has had some people saying, eh, it's just security through
obscurity. I'm not sure that I buy that.

Okay. Sophos has a 9.8. Last week the cybersecurity firm Sophos warned that a recently
patched critical security vulnerability - and that's the way you want to start these notices
about a 9.8, it's recently patched, good, better than we don't have any fix for it yet -
recently patched critical security vulnerability in its firewall product was now being
actively exploited in real-world attacks. Now, that's not what you want to say; but that
flaw CVE-2022-1040 sports, as I said, the attention-grabbing CVSS of 9.8 and impacts
Sophos Firewall versions 18.5.3, also known as 18.5 MR3, and earlier.

And what you never want to hear is it's an authentication bypass vulnerability in the user
portal and web admin interface. You could argue that the user portal needs to be open
and running on the public side. Web admin, eh, I have to be convinced. But once again,
there's a way to protect that. And still worse, when it's exploited, this particular 9.8, thus
the number, allows a remote attacker to execute code of their choosing. And obviously,
since it's under exploitation, the bad guys are aware of it. Sophos's security advisory
said: "Sophos has observed this vulnerability being used to target a small set of specific
organizations primarily in the South Asia region. We have informed each of these
organizations directly." So clearly they've got some telemetry with their product which
has allowed them to determine, whoops, this is happening, and nice of them to let their
customers know.

And, you know, as for "doing it right," the flaw was addressed first in a hotfix that is
automatically installed for customers who have the "Allow automatic installation of
hotfixes" setting enabled. And I recognize we've talked about this a lot, that the whole
issue of automatically pushing updates of security vulnerabilities is a bit controversial. I
would argue it's becoming less controversial with time. But at least in this instance,
having Sophos taking responsibility for and maintaining their firewalls to me sure seems
like a good idea. Our operating systems are doing it now. Our mobile device platforms
are doing it now. Pushing that out one level or layer to the firewall that is in front of the

Page 7 of 24Security Now! Transcript of Episode #865

operating systems, that seems like a good idea, and especially when it's also in front of
potentially a whole organization.

If it were mine, I'd be inclined to let Sophos autonomously maintain the firewall whose
code they created in the first place. And I'm sure it's signed and authenticated, and
there's no way for it to be spoofed. And yes, it's true. If they suffered a break-in, bad
guys could potentially poison the source of the updates and push that out. So there's the
downside of that. But on balance, probably a good idea. And not surprisingly, until the
firewall is updated one way or the other, if a user goes and gets it themselves, they
recommend that their users disable WAN access to the User Portal and the Web Admin
interfaces. And I would wonder why. Certainly those should not be enabled unless they're
absolutely needed.

And in a statement about both their integrity, their commitment to doing things right,
and the severity of the issue, they have also provided updates to many earlier past-end-
of-life versions of their firewalls and firmware. Sophos said: "Users of older versions of
Sophos Firewall are required to upgrade to receive the latest protections and this fix."
These things were past end-of-life, and they thought, okay, this is bad enough, we're just
going to fix those. And as we'll be seeing, that's a choice that Wyze did not make with
their cameras.

Okay. So last Thursday the U.S. CISA ordered federal civilian agencies to patch, not only
that critical Sophos firewall bug we were just talking about, presumably if they don't
already have automated update or auto update enabled, but in addition seven other
vulnerabilities. And the federal civilian agencies have three weeks, or until April 21st, to
get them all patched. And CISA says all eight of these vulnerabilities are under active
exploitation. We know that the Sophos one is.

In addition to the Sophos problem, the CISA also ordered federal agencies to patch a
high-severity arbitrary file upload - that doesn't sound good - vulnerability in the Trend
Micro Apex Central product management console that can similarly be abused in remote
code execution attacks. Two days earlier, Trend Micro said that it had observed "at least
one active attempt of potential exploitation," which sounds a little bit like they're
hedging, but I'm sure they know that this is actually happening. And the list of eight total
"you must patch these" commandments include the need to patch a different QNAP NAS
problem than the one we were just talking about, an improper authorization vulnerability
which has been reported to affect QNAP NAS running HBS 3, which is their Hybrid Backup
Sync. When exploited, that vulnerability allows remote attackers to log into a device. So I
suppose it's no surprise that QNAP is being targeted as much as they are.

Anyway, when I was looking over this list, I did a double take, since two of the eight
CVEs which CISA says are currently under active attack are dated 2018, and one is back
from 2014. The two from 2018 are for Dasan GPON Routers. And I'm sure we talked
about this back in 2018 because I remember the GPON stands for Gigabit Passive Optical
Network routers.

Leo: Oh, GPON.

Steve: GPON. And they suffer from, again, a long-since-patched command injection
vulnerability and authentication bypass vulnerability, two different problems, currently
under attack, that have long since patched. But again, it's a router. So you can kind of
see it like in a forgotten closet somewhere, just sitting there, doing its job, hosting all
kinds of crypto currency miners and who knows what else.

Okay. The CVE from 2014 is a bit startling. 2014. It's CVE-2014-6324.

Page 8 of 24Security Now! Transcript of Episode #865

Leo: So the year gets assigned when it's discovered. Right? So it's been eight years.

Steve: Yes, eight years, this thing. And it's in use now. It's being, like...

Leo: Sure it is.

Steve: They're seeing people scanning for this thing.

Leo: It's an oldie but goodie, yeah.

Steve: Oh, boy. Its description in the National Vulnerabilities Database says: "The
Kerberos Key Distribution Center (KDC) in Microsoft Windows Server 2003 SP2, Windows
Vista SP2, Windows Server 2008 SP2 and 2008 R2 SP1, Windows 7 SP1, Windows 8,
Windows 8.1, and Windows Server 2012 Gold and R2." It's there. It's in all those. "Allows
remote authenticated domain users to obtain domain admin privileges using a forged
signature in a ticket." And that sounds familiar to me. I'm sure we talked about it back
then. And it's been exploited in the wild since November of 2014. It's known as the
Kerberos Checksum Vulnerability."

So here we are, eight years later, and the U.S. CISA feels the need to explicitly tell
federal civilian agencies that they now - eight years, but no, no. Now you have three
weeks to get that patched. I'm sure all they needed was a gentle reminder. And oh,
yeah, get right on that. Meant to do it yesterday, but thanks for the reminder. Wow.

Okay. Two weeks ago, when we talked about the browser-in-the-browser attack during
podcast #863, it was all just theoretical. Remember that its penetration testing
developer, "Mr.d0x," had simply produced a very convincing proof of concept. We
showed in the show notes side by side a real OAuth popup authentication and his faked
one. And they were the same. The same domain name which was spoofed, everything.
So he demonstrated that using just HTML, CSS, and JavaScript, you could produce an
actual lookalike multifactor authentication popup. And in today's world it took less than
10 days for that "Hey, that's a great idea" concept to become fully weaponized.

Last Thursday, a Belarusian threat actor known as Ghostwriter, also known as UNC1151,
had been spotted leveraging this recently disclosed browser-in-the-browser technique as
part of their credential phishing campaigns which are simultaneously exploiting the
ongoing Russian invasion of Ukraine. As Mr.d0x demonstrated, this technique allows a
legitimate domain and popup to be shown to an unsuspecting user.

Google's TAG team, their Threat Analysis Group, wrote in a posting last Wednesday that
Ghostwriter was using Mr.d0x's browser-in-the-browser to siphon credentials entered by
unsuspecting victims.

Leo: Well, of course. Who doesn't love Mr.d0x?

Steve: What could possibly go wrong? Let's just show this to the world because maybe
the Belarusians are out of fresh ideas for how to phish people. So the TAG team said: "In
early March, Google's Threat Analysis Group published an update on the cyber activity it
was tracking with regard to the war in Ukraine. Since our last update, TAG has observed

Page 9 of 24Security Now! Transcript of Episode #865

a continuously growing number of threat actors using the war as a lure in phishing and
malware campaigns.

Leo: Oh, of course. God.

Steve: Of course. It always happens. Government-backed actors from China, Iran, North
Korea, and Russia, as well as various unattributed groups, have used various Ukraine
war-related themes in an effort to get targets to open malicious emails or click on
malicious links. Financially motivated and criminal actors are also using current events as
the means for targeting users. For example, they wrote: "One actor is impersonating
military personnel to extort money for rescuing relatives in Ukraine." Wow.

Leo: That's just low. God.

Steve: Hey, would you like your mother to be rescued? I'm a Russian, and I found your
Mom, and send me some money, and I'll bring her home. Wow.

Leo: Ugh.

Steve: TAG has also continued to observe multiple ransomware brokers continuing to
operate in a business-as-usual sense. So it should be no surprise. Anytime anything of
importance happens anywhere, the scum surface in an attempt to leverage the event to
their advantage, whatever it might be.

In this case Google's group wrote that: "Ghostwriter actors have quickly adopted this
new technique, combining it with a previously observed technique, hosting credential
phishing landing pages on compromised sites." So here we have an example of a purely
theoretical proof of concept being picked up within days of its publication and quickly
being leveraged to significantly increase the effectiveness of a traditional phishing and
logon campaign. And as we discussed at the time, Leo, two weeks ago, you look at it,
and it's like, yeah, this says PayPal, very clear, P-A-Y-P-A-L. No typo. It's not Popal or
anything else. You know, looks great. Click that link. What could possibly go wrong?

Leo: Yeah, yeah.

Steve: When we first talked about NPM supply chain attacks last week, the security firm
JFrog had identified at the time a total of 218 malicious packages which were using a
form of name collision to replace packages in the @azure namespace. By naming their
malicious packages without any namespace designation, their packages might be
obtained if a developer had not explicitly specified the @azure namespace as their target
for their dependency.

At the time, and it turned out that was true, it wasn't a massive effect, but it was
worrisome. And at the time JFrog had not identified the threat actor behind this NPM
repository attack. Now, a week later, we know more. The threat actor is named "RED-
LILI," R-E-D hyphen L-I-L-I. They've been linked to this ongoing large-scale supply chain
campaign targeting the NPM repository, and have published nearly 800 malicious
modules.

Page 10 of 24Security Now! Transcript of Episode #865

The Israeli security company Checkmarx said: "Customarily, attackers use an anonymous
disposable NPM account from which they launch their attacks, as in one account. But this
time, they said, the attacker has fully automated the process of NPM account creation
and has opened dedicated accounts, one new account per package, thus making this new
malicious package much more difficult" - these new malicious packages - "much more
difficult to spot."

Checkmarx's findings build upon recent reports from, as we know, JFrog, but also
Sonatype, which detailed hundreds of NPM packages which leveraged the dependency
confusion typosquatting-style package replacement to target not only Azure, but also
Uber and Airbnb developers.

According to a detailed analysis of RED-LILI's modus operandi, earliest evidence of
anomalous activity was found to have occurred on February 23, with the cluster of
malicious packages being published in "bursts" over a span of a week. Specifically, the
automation process for uploading the rogue libraries to NPM, which Checkmarx described
as now being a "factory," involves using a combination of custom Python code and web
testing tools like Selenium to simulate user actions required for replicating the user
creation process in the registry.

So in other words, an actual user goes through some processes to sign up for and
acquire an NPM account. Well, nothing prevents all of that from being automated. This
reminds me of the problems we were having initially over on our web forums, right,
because you could have bots or actual users, and we have seen actual users creating
accounts. So it's true they're not a robot when they click "I'm Not a Robot." They're
telling the truth.

Bypassing the one-time password verification barrier put in place by NPM is no problem
since NPM sends a one-time password to the email address the attacker's bot registers
with. And what I've seen firsthand from bots registering on our web forums, they just
create Gmail email accounts like there is no tomorrow. Typically a normal first name and
then six or seven digits, which they just make up at random. Probably doesn't exist.
Create the account, looks, I mean, it is a valid Gmail account. They then register under
that account. The one-time verify your email goes there. They pick it up from there,
plunk it into the web page. The whole thing is now automated. So one malicious package
per account, thanks to automation.

Checkmarx researchers said: "As supply chain attackers improve their skills and make
life harder for their defenders, this attack marks another milestone in their progress. By
distributing the packages across multiple usernames, the attacker makes it harder for
defenders to correlate and take them all down with 'one stroke' as had traditionally been
possible."

So I read this as sort of the chickens coming home to roost. The NPM system never had
super-tight security. And that was fine for a long time. But now it's not. And this is sort
of, if we were to - if there was a recent theme, it would be things that were okay for a
long time are no longer so. The lowest of the low-hanging fruit has been picked. Now
attackers are looking around for other targets, and they're finding them. They're finding
things that were not really deeply secured and going after those.

On the NPM side, its lack of tight security is finally becoming a problem for it. And the
only way to combat this would be to impose much more stringent strictures on account
creation and content publication. And like making somebody be a registered user for
some length of time. The problem is I've seen that being bypassed. I've had over on GRC
prior to us locking things down to a much greater degree, which we finally have, when I
was getting rid of old accounts, there were all these bogus accounts that had been
created that had never posted anything, presumably waiting for a time when they would

Page 11 of 24Security Now! Transcript of Episode #865

come back later. And if there was some sort of a time, a minimal time somebody has to
be a member before they're allowed to create content, they were just letting those clocks
tick, waiting for the time that they would start posting spam under those accounts. So I
don't know how you solve this problem. But it really is one.

FinFisher has been lurking around for years as one of the more successful and prevalent
commercial spyware purveyors. Their product is called FinSpy. And the good news is that
this Munich, Germany-based spyware company formally declared its insolvency last
month amid an ongoing - not only "amid," but due to an ongoing and certainly
unwelcome - to them, welcome to the rest of us - investigation into its business dealings.

They made the mistake, FinFisher did, of selling their premiere spyware product FinSpy
to the Turkish government without having the legal documentation required to do so,
after which their FinSpy system was used in a Turkish operation that preyed upon anti-
government protestors. We talked about this at the time. Legal complaints filed by
Reporters Without Borders, Netzpolitik, the Society for Civil Rights, and the European
Center for Constitutional and Human Rights, all accused FinFisher of failing to abide by
European export regulations including the requirement to obtain a permit granting trade
to non-EU countries by the Federal Office of Economics and Export Control. FinSpy was
created back in 2016 and has been linked to customers including the governments of
Egypt, Bahrain, Bangladesh, Ethiopia, Oman, Saudi Arabia, and Venezuela.

According to the NGO's investigation, they said: "There are urgent indications that the
Munich-based company conglomerate sold the spy software FinSpy to the Turkish
government without the approval of the federal government, and thus contributed to the
surveillance of opposition figures and journalists in Turkey." So about a year and a half
ago, in October 2020, German authorities raided FinFisher's corporate offices, two
associated businesses, and the residences of directors and executives, leading to the
recent announcement that FinFisher accounts were seized and operations halted. So it's
very likely the end of that operation. Not the end of all mobile spyware sales,
unfortunately, but at least one fewer.

Recall that three weeks ago, during our QWACs On, QWACs Off episode, we mentioned
the attack on Nvidia's networks and that the attackers subsequently exfiltrated about a
terabyte of Nvidia's data, which paradoxically included some expired Nvidia driver signing
certificates. Those certificates were then immediately used to sign malware, and I was
puzzled at the time over how and why Windows would choose to honor drivers signed by
certificates that were expired at the time of their signing. That still remains a mystery.
The mystery that no longer remains regards a couple of the perpetrators behind that and
apparently many other recent very high-profile attacks including the likes of Microsoft,
Nvidia, Samsung, Okta, and Ubisoft, with many of them resulting in massive data leaks.

The group calls itself Lapsus$ spelled L-A-P-S-U-S with an additional trailing dollar sign
appended. And despite the trailing dollar sign and their high-profile victim list, most
Lapsus$ members are believed to be teenagers driven mainly by their goal - actually I
don't think we can say "most" because we don't know how big the group is. But we've
found...

Leo: Seven teenagers were arrested, yeah.

Steve: Yes, in addition to these most recent two, who were aged 16 and 17. They made
the news last week when they appeared at the Highbury Corner youth court in London,
charged with a number of cyber offenses. The names of both men, being minors, are
being kept private, and both were released on bail. They've both been charged with three
counts of unauthorized access with intent to impair operation of, or hinder access to, a

Page 12 of 24Security Now! Transcript of Episode #865

computer; and two counts of fraud by false representation. Additionally, the 16 year old
has also been charged with one count of causing a computer to perform a function to
secure unauthorized access to a program. Which, you know, is gobbledy-gook for they're
hackers, or legalese for they're hackers.

And the pair appears to be part of a larger group because also last week, as you said,
Leo, the City of London police, which is leading the international investigation into
Lapsus$, announced that it had arrested seven people, all between the ages of 16 and
21, in the U.K. alone.

In the U.S., our FBI is looking into the group's illegal activities and is seeking information
concerning the Lapsus$ members involved in the compromise of computer networks
belonging to multiple U.S.-based companies. The FBI said: "These unidentified individuals
took credit for both the theft and dissemination of proprietary data that they claim to
have illegally obtained. The FBI is seeking information regarding the identities of the
individuals responsible for these cyber intrusions." So we've got an interagency issue. In
the U.K., they're not disclosing the names of these individuals. The FBI is saying, well,
thank you, we understand that, but we need to know. So I imagine that'll happen.

While it's still unclear how many active members the gang has and what roles each of
them play, based on Telegram chats it's believed that they at least have affiliates, if not
core members, located all over the world, speaking multiple languages including English,
Russian, Turkish, German, and Portuguese.

Their bail and release was said to have "conditions." And I would bet that one of those
conditions is an utter and total parental-enforced ban from any use of any Internet-
connected devices while this case moves through the courts. If so, that might explain
why around the time of the news of the arrests, Lapsus$ told its nearly 58,000 Telegram
followers, among whom I'm sure is the FBI, that some of its members would be "taking a
vacation."

But those recent arrests haven't put a damper on the larger group's activities because
last week 70, seven zero, gigabytes of data belonging to the software services giant
Globant were leaked on March 30th. Globant, whose headquarters are in Luxembourg,
said they're currently conducting an exhaustive investigation and that it's "taking strict
measures to prevent further incidents." I bet they are. Too bad they didn't do that
beforehand.

Okay. I titled this "Not So Wyze." One week ago, last Tuesday, Bitdefender published the
results of their close examination of the very popular Wyze family of security and
surveillance-oriented Internet-connected webcams. And it will surprise no one to learn
that they found problems, nor that the problems were extremely critical given the
application these webcams are typically deployed for. Right? I mean, they're being sold
as let's use this for security. And as I said at the top of the show, I utterly love the
details, and our listeners will, too, and you will, Leo, of the authentication bypass that
Bitdefender found, which I'll describe in a minute.

The most distressing part of the story, well, the equally distressing part of the story, is
the fact that the Bitdefender group has been working with Wyze, or perhaps better stated
"attempting to work with Wyze" for three years to get these three critical problems which
they uncovered resolved. Back on March 6th of 2019, Bitdefender made first contact with
Wyze and asked for a PGP key via their support form. You know, and as we know, that's
standard practice now. You ask a vendor for a PGP key which will allow you to securely
communicate with them, which involves the disclosure of potentially extremely sensitive
details that they don't want exposed any more than the discoverer wants them exposed.
No response.

Page 13 of 24Security Now! Transcript of Episode #865

They waited a week. On March 15th, 2019, three years ago, a little more now,
Bitdefender made a second attempt at getting in touch with the vendor, still no response.
Apparently unrelated, on April 22nd, Wyze released an update for Wyze Cam v2 to
v4.9.4.37, which reduced the risk for unauthenticated access to the contents of the SD
card that the camera might have. But still no contact with Bitdefender's research team.
So this looks like it was just coincidental.

The next day, 4.10.3.50 was released for Wyze Cam Pan v1 with the same risk reduction
for unauthenticated access to the contents of the SD card. So that looked like they did
the same firmware update to a different product. That was April 23rd. A month goes by,
and Bitdefender thinks, well, okay, let's reserve some CVE numbers for what we will
eventually be publishing. So they did that. So that's May.

June, July, August, September, four months. And Wyze released Wyze Cam v2 that
happened to fix one of the three CVEs that had been issued, but not the most critical
one. So that was September 24th, 2019. Now we move to November 9th, 2020. And the
vendor fixed a different one of the CVEs through an app update. The next day, finally,
Wyze acknowledges the reception from a year and a half before and assigns an internal
contact at Wyze to deal with Bitdefender. Two days later, Bitdefender sends the advisory
to them and a proof of concept. Nine months pass. Silence.

On August 31st, 2021, Bitdefender follows up on patch progress. Hello. Is anybody
there? September 13th, 2021, so two weeks from August 31st to September 13th.
Bitdefender notifies the vendor. Oh, it actually probably was exactly two weeks. They
waited. Nothing happened. So they said, okay, we're going to publish. Four and a half
months pass, which brings us to January 29th, 2022. Wyze released firmware to fix the
unauthenticated access to the contents of the SD card issue, which is one of the biggest
problems. Okay. So that was on January 29th. Being again ridiculously responsible,
Bitdefender waited 60 days from January 29th to March 29th. On March 29th, they
published their report.

I've said it before, and I'm sure this won't be the last time I say it again: There is
something fundamentally wrong with the idea, the way we have everything set up today,
that an independent security research group must expend this level of effort to not only
first reverse engineer and examine a product whose security is critically important to its
users, but to then face an utterly unresponsive product publisher and attempt for three
years to get them to fix critical flaws in the operation of their surveillance interconnected
webcams.

And look at the Catch-22 that Bitdefender is then in. The only way to leverage
responsibility from Wyze, to get Wyze to get off the dime, would be to go public with the
news and the details of the flaws. But doing so would immediately place all of Wyze's
gazillion webcam users at significant risk. And even if details were withheld, from like a
partial disclosure by Bitdefender, we've all seen many instances where just telling the
bad guys where to look for vulnerabilities is all that's necessary. Those wearing black
hats could certainly follow in Bitdefender's footsteps. So Bitdefender had little true choice
other than to wait and push and poke and prod and hope that Wyze would eventually
open a responsible dialog. Again, they couldn't risk drawing any attention to the Wyze
cams because other people could figure out how to exploit them. And the problems were
really bad.

And what I loved, it's just rich that Wyze's cybersecurity team, like they have one, finally
said they appreciated the responsible disclosure provided by Bitdefender on the
vulnerabilities. Yeah, I bet they did. Three years Bitdefender patiently waited because of
Bitdefender's ethics. Essentially Wyze had Bitdefender over a barrel.

Page 14 of 24Security Now! Transcript of Episode #865

Okay. So get a load of this truly amazing classic remote connection authentication
bypass. It's just the best thing ever. When connecting remotely, a client is required to
log onto the camera; right? The camera running a service, so we'll consider it to be the
server. The client being a user on a web page or whatever. A client is required to log
onto the device. Of course, because you don't want everyone to have access to your
webcam, by definition. The client and the webcam share a 128-bit secret key. Okay,
that's good security. Webcam has a 128-bit secret key burned into it. The client is
required to know it, a pre-shared key. Good security. No problem there.

So the client initiates its connection by sending an IOCTL, an IO Control command, with
the ID of its hex, 2710. Upon receiving, the cam will accept a TCP connection. Then the
Wyze cam receives this packet with the ID 2710, which induces it to generate a random
nonce value which it encrypts with its 128-bit shared secret key. Okay, that's great. It
sends the encrypted blob to the client. By the design of this simple protocol, the client
must have that same 128-bit shared secret key, which it uses to decrypt the camera's
randomly chosen nonce value, which it had then encrypted, to authenticate itself to the
camera, which it does by returning the properly decrypted camera nonce using an IOCTL
command with the ID 2712 instead of 2710.

So 2710 initiates the handshake, asks the camera to generate a nonce, which encrypts
the 128-bit shared secret, sends the encrypted blob back to the client. Client that has the
same 128-bit shared secret key decrypts it and then returns it to the camera under the
command 2712. The camera receiving the 2712 IOCTL compares the nonce that was
hopefully decrypted by the connecting client to the value that it stored locally. And only if
they match will the authentication succeed and the connection be accepted. And after
that the client is free to do whatever it wishes with the camera. Right? No problem.
Simple. Shared secret. Workable protocol.

Here's what the Bitdefender guys found. The way the Wyze firmware works is that upon
receiving that initial 2710 command, it generates and stores the nonce for subsequent
comparison. And it then encrypts it and sends it to the client. But if the client never
sends the 2710 command in the first place, the nonce's value stored in RAM remains set
to all zeroes. I just love this.

So all any attacker needs to do to gain full access to any original or only just patched
just, what, earlier last month, or any unpatched cam, is to connect and skip issuing the
first 2710 command which asks the camera to begin the authentication handshake.
Instead, an attacker simply first sends the second 2712 command with an all-zeroes
authentication. Since that will always match the camera's default null nonce, anyone can
log into anyone's Wyze cam. You can see why Bitdefender said "Holy crap" three years
ago.

Leo: Anyone would. But you do have to physical access. You have to be on the WiFi;
right? You can't do this from the Internet. Or can you?

Steve: No. No no no no. It is a network attack.

Leo: Okay.

Steve: So the camera needs to be exposed. You have to be able to connect to the
camera.

Page 15 of 24Security Now! Transcript of Episode #865

Leo: Right.

Steve: So if it's behind a NAT router, you wouldn't be able to. But if there were some
reason that somebody had put their Wyze cam on the Internet, then anybody can access
it.

Leo: Wow. Okay.

Steve: Bitdefender wrote: "After authentication, we can fully control the device,
including motion control, pan and tilt; disabling recording to SD; turning the camera on
or off, among other things. We cannot view the live audio and video feed, though" - get
this - "because it is encrypted under that same still unknown to a remote attacker shared
private key. However," they wrote, "we can bypass this restriction by daisy-chaining a
stack buffer overflow which leads to remote code execution as detailed in Part 2."

They said: "For the stack buffer overflow, when processing IOCTL with ID 2776, the
device does not check whether the" - you're not going to believe this, Leo - "whether the
destination buffer is long enough before copying the contents onto the stack."

Leo: Well, there you go.

Steve: Uh-huh. "Exploiting this vulnerability is straight-forward. Through the IOCTL with
ID 2776, we can set which servers to use to connect to the cloud. This seems to be a
debugging function that allows the selection of production, beta, or internal API servers.
When sending a request, we specify the length of the buffer in the first byte, then the
buffer itself." They said: "This content is then copied onto the stack into a fixed 40 hex,
which is 64 bytes, length buffer. Even though the specified size in the first byte is taken
as a signed INT" - okay, now a signed INT that is a byte will have a maximum size of 7F
because the signed bit that we were talking about a few weeks ago, that's got to be off
for the signed INT to have a positive value. Still, 7F is 127, so that's enough to overwrite
a 64-byte buffer and allow the stack to be overwritten and run the attacker-provided
code.

The third and final flaw they found is unauthenticated access to the contents of the SD
card: "When inserting an SD card into the camera," they said, "the contents of the SD
card, including the recordings, can be accessed via the web server listening on port 80
without authentication. This is enabled by the fact that, after an SD card is inserted, a
symlink to the card mount directory is automatically created in the www directory, which
is served by the web server. The card contents can be viewed through the hello.cgi
functionality located at /cgi-bin/hello.cgi; then the files can be downloaded through
the /SDPath/path.

The SD card also holds the camera's log files. Before writing them to the card, the device
XORs the content with a hex 90" - like why? - "not very strong protection. These log files
can contain sensitive info such as the unique ID and the shared private key, which can
then be used to connect remotely," and view the stream in real-time because now we're
able to decrypt the stream, having obtained the shared private key.

The good news here, such as it is, and it's not much, is that the second- and third-
generation Wyze cams can be updated to cure these various problems. The bad news is
that the first-generation cameras have been abandoned by Wyze, and Wyze has said that
they do not plan to support or update them in the future. The only thing we can hope for,

Page 16 of 24Security Now! Transcript of Episode #865

for anyone who has early first-gen Wyze cameras, is that maybe the press that this is
now, finally, after three years, generating with the negative publicity of having critically
broken and trivial-to-hack first-generation webcams might cause Wyze to change their
minds. I mean, unless it's burned into actual ROM, there is no reason, or maybe they
have no - they didn't provide a means for updating the firmware. I can't explain. They're
just...

Leo: They say there's not enough RAM to update the firmware, not enough memory.
That seems hard to believe.

Steve: Okay. It does. It seems more likely that they're just like, well, those are too old.

Leo: Yeah. They were only 20 bucks; right? I mean, you know...

Steve: It was an amazing little camera for the price.

Leo: Right.

Steve: But Wyze, you know, and this is what we see, right, with bottom of the barrel IoT
vendors that just want to sell their stuff and not be bothered with security.
Unfortunately, they tried to have it secure, but nobody audited their stuff; right? It's all
proprietary. It's just trust us, you know, we got this. It's, oh, 128-bit encryption. Military
grade. Can't get in there. Yes. Just drop the first half of the handshake and do the latter
half, and handshake with all zeroes, and you're in.

Leo: Wow.

Steve: Yeah. Two tweets from listeners, from someone whose name is The Nargles. His
Twitter handle is @WithTheNargles. He said: "Thanks for your recommendation. I just
finished the first Bobiverse book. All I can say is, thanks for the recommendation. It was
a lot of fun." He said: "And Ray Porter's narration," he said, "particularly of GUPPI, is
spot-on."

Leo: Yeah, you're missing out on that. It's pretty good. He does GUPPI as Admiral
Akbar. So he's always talking like this. It's great. It's really funny.

Steve: That would be great.

Leo: Yeah, Ray Porter's really a talent, and he kind of brings a Martian, Andy Weir's
"The Martian" style to it, which is great.

Steve: Nice. Scott Cleveland tweeted: "@SGgrc A few weeks ago you and Leo were
talking about the Bobiverse 'We Are Legion (We Are Bob)' books." And he said: "Thank
you!" He said: "It's so hard to narrow down when scrolling through Audible what I will
like. Your suggestions are pretty much a spot-on automatic win for me." So thank you,

Page 17 of 24Security Now! Transcript of Episode #865

Scott. And then it occurred to me, if the quality of my recommendations is to hold, I
should probably note that Book No. 4 is noticeably dragging.

Leo: Yeah.

Steve: It's still okay, but Dennis appears to be running out of new ideas for his Bobs.
He's reusing the ideas he already has, and I have to say he's built an extremely
interesting and clever Bobiverse using subspace com links and virtual reality in clever
and, given a suspension of disbelief, feasible ways within this universe. But perhaps it
should have been left at a trilogy.

Leo: Yeah. I'm halfway through Book 2. Maybe I'll just stop at 3.

Steve: Yeah, I think you should. But, you know, still there is more fun stuff happening.
Oh, have you run across the Others yet?

Leo: Yes, yes. The Others exist. In fact he's just now encountering them for real. So
I'm excited. It's getting exciting.

Steve: Yes. They are really, really, really, I mean, they're, I mean, bad.

Leo: Yeah. Yeah.

Steve: And seeing how they get taken care of is worth finishing the trilogy.

Leo: Peter F. Hamilton's aliens from, is it "Fallen Dragon," I can't remember which
one.

Steve: "Pandora's Star."

Leo: Maybe it's "Pandora's Star," the ones that just kind of, yeah, they're great.
They look like little...

Steve: The motiles.

Leo: The motiles, yeah, yeah. That's my favorite evil alien.

Steve: Oh, and they were non-biological. And they were quadrilaterally symmetrical;
right? So they had like four feet, and they were sort of - kind of like Daleks except bad.

Leo: Quick follow-up from the chat room. Would it be safe to use a Wyze cam v1
behind a firewall?

Page 18 of 24Security Now! Transcript of Episode #865

Steve: I think so, yeah.

Leo: Yeah, because it needs access from the outside world.

Steve: Yes. The threat model is that you might have mapped a port through it so that
you had access to the camera directly, remotely. And unfortunately that means other
people could, too.

Leo: Thanks.

Steve: And of course that's another reason why our topic for the day, port knocking, will
be of I think great interest to some of our listeners.

Leo: Yes, indeed.

Steve: David Lemire, he said: "Hi, Steve. I recently bumped into the author of NoScript
on Twitter," he said, "when I mentioned I'd abandoned it long ago. He encouraged me to
take a fresh look. So I found the website." He said: "Looking at the usage page, it does
appear that the program has been updated/adjusted to the realities of the modern web."
And he said: "I know you also gave up on it long ago, but this was interesting enough I
thought maybe it was time for a revisit of NoScript." He said: "And no, I haven't actually
tried playing with it myself yet, or I'd include my experience here."

Okay. So David, thank you. And I wanted to share that little tidbit with our listeners. I
appreciate knowing that NoScript hasn't thrown in the towel yet, despite its name. And it
occurred to me that the author is probably suffering the same dilemma I am with
SpinRite. Renaming his program "SomeScript" really doesn't pack the same punch.

Leo: No. Well, it's some scripts.

Steve: It's SomeScript because you need some script. But you can't do NoScript. Our
development group's discoveries with SpinRite strongly indicate that SpinRite's future
with solid-state mass storage is guaranteed, perhaps maybe even more so than it ever
was with spinning media. But I can't change the name, even though someday nothing
will be spinning anymore. It's still going to be SpinRite.

Leo: On we go with a little knocking, with Steve Gibson.

Steve: Don't knock it. Don't knock it. Okay. So our listeners have heard me over and
over and over lament the dangers of having exposed ports on the public Internet. There's
the problem of a recognizable server or service that is in some way protected, but with a
password which can be brute-forced in the background over time. Or, I mean, equally
problematic is a service that has strong authentication, but a bug in the service itself. A
perfect example is this OpenSSL bug. There's nothing that you need to authenticate
about establishing a TLS connection. The problem there is a bug in the underlying service

Page 19 of 24Security Now! Transcript of Episode #865

itself. And if the access to the port is completely unrestricted, then that means an
incoming packet from any of 4.3 billion IPs is treated just like any other.

So the solution to this is firewall rules. And I have three locations, and I've got static
links running in a triangle configuration between all three using strong firewall rules. I
have the advantage that GRC is a set of fixed IPs. They will never change. But a cable
modem rarely changes. I mean, you have to be offline or unplugged for day. And then
when you reconnect you may get a different IP. You probably will. But, I mean, I'll go
years often with no IP change. And so the key is that every endpoint knows its IP and
knows the IPs of the other endpoints it trusts and selectively allows packets on specific
ports only from those IPs. And when they're TCP connections, because of the need for a
three-way handshake, IPs cannot be spoofed, as we know. UDP spoofable; TCP not.

And of course we've talked about being stealth, you know, GRC's ShieldsUP! service likes
the idea that your firewall, your router is not even saying to a requested connection no,
thank you, there's no port here, go away. Instead, it just drops the packet. In this day
and age, technically by the original formal protocol rules of the Internet, you should
respond by saying hi, I got your packet, but you should know there's no service running
here. Well, unfortunately that provides information out of a sea of IPs that there may not
be a service there, that service. But there's something there, maybe at a different port.
So better just to let the packet die in a modern Internet.

So imagine that you want to make a service available or services available to an IP which
is not static and not previously knowable, but could be anything, yet you simultaneously
want all other services or that service at all other IPs not to be available. Well, since the
way you enforce allowing a specific IP to connect to a specific port is with a firewall rule
that permits packets in identifying themselves with a source IP and a destination port
which is specified, what you want is essentially a means of on-the-fly changing a firewall
rule to permit a specific client anywhere on the public Internet to get in.

And there are several ways to do this. Generically those are known as port knocking. And
the original old-school port knocking was very clever. The idea is that in the machine
with the firewall which is publicly exposed to the Internet, you run a service. And in Linux
it's known as "knockd," K-N-O-C-K-D. And it's available. Linuxes have it. It's not that
widely used, which is one of the reasons I wanted to talk about it today. It's there, and it
is cool. It runs monitoring the interface itself below the level of the TCP/IP stack. And you
have to have libpcap installed in order to allow it to open a connection to the raw
interface. This service is script driven. It takes a config file that tells it what to do when it
sees different things.

So the idea is that when packets come down the wire to your IP and hit the machine, if
they're unsolicited from some random IP on some port that you don't have open, they
just die. They hit the machine, they die. But the point is they cross the NIC to the guts of
the computer where libpcap and this knockd daemon are able to see them. So imagine if
this firewall, this machine, had a secret knock sequence, which is to say send a packet to
port 10192. Then send a packet to 10234. Then send a packet to 32769. Then send a
packet to 50743.

The point is you can create an arbitrary long sequence which has to be specified in the
proper sequence to create an unlocking sequence which the knockd daemon will
recognize because it's watching all the incoming traffic to your IP. And if it sees a
sequence of the proper packets all coming from one specific public IP, it then, using its
config file, emits a command to your firewall, IP tables or whatever, it supports all of the
different firewalls, to selectively open a port to the IP that generated this correct
knocking sequence.

Page 20 of 24Security Now! Transcript of Episode #865

And what you now have is a means of having services which are publicly available, but
absolutely non-existent. It's also the case that your use of port knocking is invisible,
unseen, unknowable. Unless you tell people, there's no way for anyone to know that
you're running a port knocker on your side, and that by sending a specific sequence of
packets would have any effect. And the good news is it's not very common. So people
aren't expecting you to do it.

The other piece of good news is this is actually pretty strong security. There are some
problems. We'll talk about that. But on the pro side of this, we know that port numbers
are 16 bits. So that means that a randomly chosen port carries 16 bits of entropy,
essentially. Think of it as 16 bits of password. That means that four randomly selected
ports, each carrying 16 bits, will give you 64. Or eight randomly selected ports gives you
128 bits. Okay. Eight, and 128 bits. There are people on the Internet who say, well, port
knocking is security through obscurity. I would disagree. So is a password. Nobody
knows what the password is. It's obscure. Right, it's a secret. Well, so is the proper port
knocking sequence a secret. The biggest problem with it has been solved in its evolution.

But I like this just for its clarity and its simplicity. The biggest problem is, if somebody
were able to somehow arrange to sniff the traffic between the client sending the packets
and the server receiving them, so at either end or somewhere in between, there is no
prevention for a replay attack. So standard old-school port knocking is not safe against
replay attacks. On the other hand, I'm not suggesting that this be the only security that
your system would have. For example, I'm not suggesting that after providing the
knocking sequence, the server you connect to doesn't have still its own security. Again,
multi-layers of security are good.

This is another really intriguing and useful layer because it is able to hide the fact that
there is a server accepting TCP connections. Without port knocking, that server will
accept a TCP connection from anyone because it might have to accept a connection from
anyone. That tells the bad guys there's a server there listening on that port, and they can
go to town. If you put up another layer around your system, a port knocker, you look like
every single port on your machine is stealth. You know different.

The other kind of cool thing about port knocking is that it doesn't take a sophisticated
client to be able to generate these. I've seen an example, for example, where telnet,
trying to initiate a connection, will send three SYN packets to an IP that doesn't respond.
So you could set up the knocker daemon to look for three SYN packets on the first port,
then three SYN packets on a second port, and so on. That would mean that you could
just use a brain-dead telnet which you ask to connect to eight successive ports which it
will ultimately fail. You know that each of those generated three connection attempts. So
you've ended up sending a total of 24 packets.

And now the knocker daemon is satisfied. It sends a command to IP tables, opens up a
rule, adds a rule to only accept incoming connections to the destination that you specified
for that knocking sequence from whatever IP you're at. So even with the knock
completed, bad guys still can't see that you have anything open because it is only open
for the IP which was the source of the knock packets. Anyway, my point is it is such a
clever and cool idea that I wanted to share the concept with everyone. And there are
knock generators, knocking clients which will do a much more clean job of establishing
connections, depending upon what kind of client you have. Okay. But I said that the
problem was replay attacks.

Leo: Right.

Page 21 of 24Security Now! Transcript of Episode #865

Steve: The evolution of this which has occurred is known as single-packet authorization.
And what we're missing from port knocking is that all we're taking advantage of is the
fact of a packet hitting the firewall, not its contents. Which means we're missing a huge
opportunity. The cleverness of it is that it uses just the fact of the packet's arrival. But if
we want to step up our game, we do it with what's known as single-packet authorization.
There is a tool, FWKNOP. And that stands for Fire Wall Knock Operator. The guy behind it
took this to the next level. And again, it's on GitHub. All of this is free. All of it's open
source. And it has had, over time, it's been scrutinized to death.

Single packet authorization takes the IP of the source, that is, the IP of the client. It
encrypts it with a public key which the user knows, or private key, or both, or symmetric
key, and uses an HMAC in order to authenticate the result. And it sends one packet to a
pre-determined closed port on the destination. The agent which is listening there gets the
packet, uses its matching secret or its private key. If you want to use asymmetric
encryption, public key encryption is also supported. It authenticates the packet. It
decrypts the packet. It verifies that the IP that was contained in that envelope is the
source IP from which the packet came. And only if all of that works, it then does
whatever its been configured to do, which could be anything. So now we have fully
stealth cryptographically secure single-packet authentication which can be used to do lots
of things.

Oh, I forgot to mention that some of the cool things that the behind-the-scenes scripts
can do is, for example, it could open a port, and also send a Wake-on-LAN packet to a
server on the LAN, causing that machine to power up like by command in order to then
provide services for whatever the port was that was opened. So it's all configurable.

This FWKNOP, I've got links in the show notes. Its founder is at Cipherdyne, C-I-P-H-E-R-
D-Y-N-E, dot org, Cipherdyne.org. And to go directly to the page is /fwknop. There are
clients for Fedora, Red Hat Linux, CentOS, Debian, Ubuntu, OpenWRT, FreeBSD, macOS,
OpenBSD, iPhone, Android, Cygwin, and Windows; servers for all of the OS platforms and
the desktop platforms except for the mobile clients. Doesn't really make sense for
obviously a mobile client to have a server. GnuPG support, HMAC support, client NAT
penetration support, server-side NAT support.

Anyway, it is a beautiful complete win for anyone having a need that this particular
approach solves. And again, in this day and age, where we've got people brute-forcing
servers that are sitting exposed to all IPs when they don't need to be, I kind of wanted to
remind everybody, this thing's been around since the early 2000s. I mean, the concept
has. It's just it's very clever in terms of allowing authenticated otherwise stealth access
to servers operating at arbitrary ports. And that's port knocking.

Leo: Neat. Very neat. You can have a rolling port knock, I guess, like a TOTP, sort
of.

Steve: I don't think you really need one.

Leo: You don't need it. I'm just thinking of the replay attack issue.

Steve: Yes, very good point. And the way this guy solves the problem, he has solved it,
is it records a log of all the previous packets that have authenticated, and it will never
allow the same one to be used a second time.

Page 22 of 24Security Now! Transcript of Episode #865

Leo: Perfect, perfect, yeah.

Steve: And it would have to be the same IP, after all.

Leo: Right.

Steve: So but he actually did think about the replay problem, and he does it just by
logging successes. He logs a small hash of a success, so the log isn't big. And if the
packet, it first has to match all the other proper criteria, which means it could only be a
replay. And if it is, if it matches all the criteria, then it checks to make sure it's never
seen that before, so you don't end up with a big log in any event.

Leo: Steve, you've done it again. Another great, thrilling, gripping edition of Security
Now! for all of our listeners. Steve lives at GRC.com, the Gibson Research
Corporation. That's where you'll find SpinRite, the world's finest mass storage
maintenance and recovery utility. Version 6 is current; 6.1 is imminent. If you buy 6
now, you'll get 6.1 automatically for free. You can also participate in the
development, if you want. GRC.com.

While you're there, check out all the freebies, the forums, ShieldsUP!, all the utilities
Steve writes, like InControl. It's all there, GRC.com, along with this show. He hosts a
couple of unique versions of the show on his website, a 16Kb audio version for the
bandwidth-impaired, and he also has a transcript carefully crafted by humans, well,
a human named Elaine.

Steve: A loving human.

Leo: A lovely human. And you can read along as you listen or search to find parts of
the show and so forth. That's all at GRC.com. He also has a 64Kb audio version, as
we do. We have video as well at TWiT.tv/sn. There's a YouTube channel dedicated to
Security Now!. You can watch every show there, all 865 of them. And, well, they're
not all video. So maybe all 810 of them or whatever it is. I don't remember when we
started video. And then of course you can subscribe in your favorite podcast client.
You'll get it automatically that way. And if your client allows reviews, please leave us
a five-star review. Share the good news about Security Now!.

If you want to watch us do the show live, we do it Tuesdays right after MacBreak
Weekly. That's usually sometime between 1:30 and 2:00 p.m. Pacific, 4:30 and 5:00
p.m. Eastern, 20:30 UTC at live.twit.tv. You can chat with us live. We still use IRC,
yes, we do, at irc.twit.tv. But if you're a more modern type, and you kind of prefer to
do the Discord thing, Club TWiT members get access to a wonderful Discord, which is
not just about the show, but about every other aspect of geek life, including coding
and beer and wine and cocktails and ham radio.

Copyright (c) 2014 by Steve Gibson and Leo Laporte. SOME RIGHTS RESERVED

This work is licensed for the good of the Internet Community under the
Creative Commons License v2.5. See the following Web page for details:
http://creativecommons.org/licenses/by-nc-sa/2.5/

Page 23 of 24Security Now! Transcript of Episode #865

Page 24 of 24Security Now! Transcript of Episode #865

