
Transcript of Episode #829

SeriousSAM & PetitPotam

Description: This week we will plow into another two new serious vulnerabilities brought
to the industry by Microsoft named SeriousSAM and PetitPotam. But we first look at how
Chrome managed to hugely speed up its phishing website early warning system, making
it even earlier. We cover the striking news of Kaseya having obtained a universal
decryptor which is effective for every one of their victims. We look at the massive HP
printer driver mess and consider the larger lesson that it teaches. We look at the new
security features GitHub is bringing to its support of the "Go" language. Then, after
sharing one bit of listener feedback, we plow into SeriousSAM and PetitPotam.

High quality (64 kbps) mp3 audio file URL: http://media.GRC.com/sn/SN-829.mp3
Quarter size (16 kbps) mp3 audio file URL: http://media.GRC.com/sn/sn-829-lq.mp3

SHOW TEASE: It's time for Security Now!. Steve Gibson is here with a potpourri of great, interesting
tech news including how Chrome is making it easier to detect phishing sites using the colors on the

page. Kind of a clever fingerprinting algorithm. We'll talk about a printer driver used by millions of HP,
Samsung, and Xerox printers that is highly vulnerable. And then we'll detail a couple of new Windows

exploits. And Steve will explain why he's no fan of how Microsoft does things these days. It's all coming
up next on Security Now!.

Leo Laporte: This is Security Now! with Steve Gibson, Episode 829, recorded
Tuesday, July 27th, 2021: SeriousSAM & PetitPotam.

It's time for Security Now!, the show where we cover your security, your privacy,
online and off, with this guy right here, the chief, the man in charge, the explainer in
chief, Steve Gibson. Hi, Steve.

Steve Gibson: Yo, Leo. Great to be with you once again. We've got a bunch of stuff to
talk about. I feel so strongly about some of these topics that I thought maybe we should
call this podcast Security With Attitude because we're going to be getting some this hour.
Okay. This is Episode 829 for - this is our last podcast of July. Somehow we've survived
July. Well, okay, wait. We have four more days, so we'll hope that we're going to survive.

We're going to talk about two things. We're going to plow into another two new serious
vulnerabilities brought to the industry by Microsoft named SeriousSAM & PetitPotam.
And, you know, SeriousSAM, it was happening, it was breaking just as we were recording
last week, referred to also as the Hive Nightmare. But that was because of the printer
nightmares that we've been surviving and talking about so far during the month. So the
person who came up with that, you know, it first got named that. But SeriousSAM is
better. And of course it rhymes with PetitPotam.

Page 1 of 25Security Now! Transcript of Episode #829

Leo: Did you ever play SeriousSAM the game?

Steve: No. As a matter of fact, when I googled to do some in-depth looking, I realized,
oh. And I was a little sucked into the Wikipedia entry. It was sort of fascinating how back
in the year 2000, it was about 20 years ago, the game engines cost a million dollars.

SAM: Hey, guys, let's play...

Leo: That was SeriousSAM, just so you know.

SAM: I won't pass by. Let's fight.

Leo: Okay, just so you know, one of the great classic games of all time.

Steve: I guess. So I was unaware, but now I know.

SAM: Just what the hell was that, anyway?

Leo: All right. Thanks, Sam. You're done.

Steve: Okay. So we're going to look at how Chrome has managed to hugely speed up its
phishing website early warning system, making it even earlier. We cover the striking
news of Kaseya having obtained a universal decryptor which is effective for every one of
their victims.

Leo: I wonder where they got that.

Steve: Uh-huh. We look at the massive HP printer driver mess and consider the larger
lesson it teaches. And then we look at the new security features GitHub has just
announced that it's bringing to its support for the Go Language. And after sharing one
little bit of listener feedback, something I've mentioned before, just a useful reminder,
we're going to plow into SeriousSAM and PetitPotam.

Leo: These are very creative names, I know.

Steve: And of course we have a great techie-oriented Picture of the Week that has been
in my queue for a while, ever since I saw it. And I thought, okay, now's a good time to
share it with our, well, our viewers. And I can describe it to our listeners. So I think
another great podcast for our...

Leo: Thank you for considering both. I do like it that you do that. You're very good
at describing those. Picture of the Week, Steve?

Page 2 of 25Security Now! Transcript of Episode #829

Steve: Yeah. So this one, it's fun.

Leo: Oh, it's hysterical.

Steve: At first blush you'd think, okay, Photoshop, because it looks like it was
photoshopped. This was the conclusion of a stunning illuminated drone show. This is
1,500 drones flying around in the air that assembled at the end of the presentation to
present the QR code, which is valid and scannable, to the URL of the game company that
put this on.

Leo: Wow.

Steve: First it showed animated characters from the game, like swords being swung and
all kinds of crazy stuff. And frankly, I'm in awe of the idea that somehow they've
developed the technology to microposition drones relative to each other with this kind of
precision and animate it. Anyway, it had been in the queue of things to show. I just
thought it was so cool that I wanted to share it with our listeners. This took place in
Shanghai. I do have a link in the show notes to the article at Vice.com which talked
about it. And if anyone was curious, I did see the animated videos, and it's just
astonishing.

Leo: We were talking about this actually in our TWiT forums, twit.community
forums. And I found - because somebody said, well, how do they do that? And I
found a really good article at ScienceDirect.com that describes in great detail how
these drone swarms, is what they call them, are positioned.

Steve: Are positioned so accurately.

Leo: It's fascinating. And it's multilayered. They all have cameras. But Intel's
famous, they've got the drone - we could do it, Steve. Just $90,000. They've got, I
don't know what it is, a couple thousand drones that will - we saw it at the Olympics
a couple years ago; at the Super Bowl. It's really, really, really cool. So there's a
whole article.

Steve: I think Biden's inauguration or his something...

Leo: Yeah.

Steve: I think there was something in addition to fireworks, as I recall, also, that they
were showing.

Leo: Yeah. Well, it's better than fireworks nowadays because it's not so damaging.

Steve: Yeah.

Page 3 of 25Security Now! Transcript of Episode #829

Leo: They're reusable, obviously. But it's a really incredible thing because these
things fly within inches of each other, perfect formation.

Steve: Exactly. And they've got high-speed spinning props.

Leo: Yeah.

Steve: It's not like nothing. Yeah, it's just very, very, very cool.

Leo: Intel kind of invented a drone specifically to do this. Yeah. Whoops, that's my
salad. If I could have an Intel caprese drone, I'd be very interested. But look what
they can do. I mean, it's just amazing. It's really cool.

Steve: That's drones?

Leo: Yeah. That owl? Yeah. Look at this.

Steve: Oh, very - oh.

Leo: Much better, I think, than fireworks.

Steve: Yeah, yeah, yeah. Very cool.

Leo: All right. Back to - I'm sorry. I didn't mean to get sidetracked.

Steve: Let's see. What were we - why are we here?

Leo: What are we doing? What are we talking about today?

Steve: Okay. Actually, we do have a lot to talk about. So I'm reading this Chromium blog
posting titled "Faster and More Efficient Phishing Detection in M92," which is the just-
released version of Chrome. You know, because that sounds like a good thing. And
depending upon what the posting's details revealed, I figured that it might be of interest
to our listeners. You're hearing about it, of course, because that didn't turn out to be the
case, though perhaps not for the reason you might imagine.

The posting starts out with a little introductory marketing spiel. They said: "Keeping
Chrome users safe as they browse the web is crucially important to Chrome; in fact,
security has always been one of our four corner principles." Then I of course was
wondering what the other three were, but anyway. "In some cases, security can come at
the expense of performance. In this case" - and of course they named their series "The
Fast and the Curious."

Page 4 of 25Security Now! Transcript of Episode #829

Leo: Oh, god.

Steve: I know. "We are excited to share how improvements to our phishing detection
algorithms keeps users safe online. With these improvements, phishing detection is now
50" - five oh, and it turns out it's actually a statistical spread, but we'll get there in a
second - "50 times faster" - it should say "as much as" - "50 times faster and drains less
battery."

Then under the subheading of "Phishing Detection" they write, and they begin to explain
this, and this is what I had to like do a double-take: "Every time you navigate to a new
page, Chrome evaluates a collection of signals about the page to see if it matches those
of phishing sites." Okay. "To do that, we compare the color profile of the visited page."

Leo: What?

Steve: I know. "That's the range and frequency of colors present on the page."

Leo: That's - what does that have to do with phishing?

Steve: Exactly, it's nuts, "with the color profiles of common pages. For example, in the
image below, we can see that the colors are mostly orange, followed by green and then a
touch of purple." Now, in the show notes, I have that captured. Of course those listening
cannot see the diagram which I've included in the show notes. But it's a page with a
bunch of orange pumpkins so that orange dominates the page, though they are all in
light blue frames. It actually has more surface area. For some reason in their example
they're ignoring the light blue. Okay. Maybe they actually do ignore the background. I
don't know. Actually, later on it looks like they don't. But they also pick up on one of the
frames which has a green background. But in any event, this says that to detect phishing
they're looking at a page's color distribution. So my first thought was like yours, Leo.
What?

Leo: What? Why? Yeah.

Steve: They're comparing the color profile of a page we visit to the color profiles of
common pages? Really? Turns out yes, they are. That's what Chrome does. Then it hit
me. Whatever they do to pull off this detection needs to be done entirely on the client.

Leo: Right.

Steve: Right? Chrome cannot be sending all visited page URLs back to the Google
mothership. That would be a privacy catastrophe. Okay, now, and we'll ignore for the
time being that loading our web pages down full of image beacon pixels and JavaScript is
essentially doing exactly that. But okay. Not formally. And then they confirm the nature
of the strategy by explaining: "If the site matches a known phishing site, Chrome warns
you to protect your personal information and prevent you from exposing your
credentials. To preserve your privacy, by default Chrome's Safe Browsing mode never
sends any images outside the browser. While this is great for privacy, it means that your
machine has to do all the work to analyze the image."

Page 5 of 25Security Now! Transcript of Episode #829

Okay. So then what follows I've lightly edited to clarify what they're saying without the
use of any graphics. So they essentially wrote: "Image processing can generate heavy
workloads because analyzing the image requires an evaluation of each pixel in what is
commonly known as a 'pixel loop.' Some modern monitors display upwards of 14 million
pixels, so even simple operations on each of those pixels can add up to a lot of CPU use.
For phishing detection, the operation that takes place on each pixel is the counting of its
basic colors."

Leo: Wow.

Steve: Yeah. This was all news to me.

Leo: Did they explain why they're monitoring the colors? I'm sure there's some
correlation, but I just - it's not obvious.

Steve: So they say, yeah, kind of. "The colors are stored in an associative data structure
called a hash map. For each pixel, we extract its RGB color values and store the counts in
one of three different hash maps." So I guess they break it down into RGB, and then
they're storing a histogram of the individual intensities of each R, G, and B component.

Leo: Yeah, they probably hash it for speed; right?

Steve: And then hashing. Right. And they said: "One for each color. Adding one item to
a hash map is fast, but we have to do this for millions of pixels. We try to avoid reducing
the number of pixels to avoid compromising the quality of the analysis. However, the
computation itself can be improved; and in this just-released 92, it has been. The code
now avoids keeping track of RGB channels in three different hash maps and instead uses
only one to index by color. Three times less counting," they said. "And" - this I think is
the big key - "consecutive pixels are summed before being counted in the hash map."

Leo: It's kind of like Huffman encoding.

Steve: Yeah, right. "For a site with a uniform background color" - thus the reason I said,
well, they actually are paying attention to background colors - they said, "this can reduce
the hash map overhead to almost nothing." Like in the same way as you said, Huffman
would compress a long run of something down to something very short. "With the new
approach, there are significantly fewer operations on the hash map. As a result, starting
with 92, Chrome now executes image-based phishing classification" - okay, so the big
takeaway is that phishing is using image-based classification, like, okay, who knew that?
- "up to 50 times faster at the 50th percentile."

Okay, so that means what, that half of the users get 50 times improvement. On one side
of the 50th percentile they're getting even better improvement, and on the other side
they're getting less dramatic improvement. But they did say "and 2.5 times faster at the
99th percentile." So even 99% of all users will get up to at least 2.5 times faster. "On
average," they said, "users will get their phishing classification results after 100
milliseconds, instead of 1.8 seconds." They said: "This benefits you in two ways as you
use Chrome. First and foremost, using less CPU time to achieve the same work improves

Page 6 of 25Security Now! Transcript of Episode #829

general performance. Less CPU time means less battery drain and less time with spinning
fans.

"Second, getting the results faster means Chrome can warn you sooner. The optimization
brought the percentage of requests that took more than five seconds to process from
16.25% to less than 1.6%." So 16.5% were actually requiring more than 5.5 seconds for
Chrome to decide if this was a phishing page you were being shown. So this client-side
phishing detection has been very time and compute intensive. And they said: "The speed
improvement makes a real difference in security, especially when it comes to stopping
you from entering your password in a phishing site." Yeah, five seconds.

And so if you've got any kind of automated username and password insertion going on,
you may have already done that. It will have filled in the form, and you've clicked "log
me in" before five seconds have passed. And then it turns out to be a malignant,
malicious site. So yeah, you don't want to wait, I mean, you want to know a lot faster
than that.

They said: "Overall, these changes achieve a reduction of almost 1.2% of the total CPU
time used by all Chrome renderer processes and utility processes. At Chrome's scale,
even minor algorithm improvements can result in major energy efficiency gains in
aggregate. Here's to many, many more centuries of CPU time saved. Stay tuned for
many more performance improvements to come." So what they must have done is done
some performance profiling of Chrome and looked at, like, where all the time was going,
and a chunk of it was going to looking at every single page the user visits. And is it valid?

And so this also means that in every end-user's Chrome repository on their local machine
are a set of criteria that, like, phishing sites they have seen and profiled. So they've done
this wacky image distillation and basically reduced the image to a hash, and they've
stored all these hashes, lord knows how many, on our hard drives. And when you go to a
page, Chrome performs this process and checks to see if there's a match with any known
phishing images and, if so, warns you.

Leo: It's essentially fingerprinting the site, but it's doing so by its use of color. And I
bet you where this came from is you have a similar problem if you're trying to detect
porn. And so all of the companies, Facebook, Google, anybody who's got image
storage has an algorithm, especially not just porn in general, but revenge porn,
where they have hashes of known revenge porn images, and then they look for...

Steve: Any future occurrence.

Leo: If it matches, oh, we've got another one, and they pull it down immediately.
And I suspect - and they also, I think there were attempts to do this with just too
much flesh at one point, which by the way were not very effective. But that's
probably where the body of knowledge comes from.

Steve: Oh, so it used to be heuristic.

Leo: Heuristic, yeah.

Steve: So if it were a lot of flesh tones, eh.

Page 7 of 25Security Now! Transcript of Episode #829

Leo: A lot of flesh tones, eh. That didn't work so well. I remember they stopped
doing that. But I suspect that the research done is probably related to this. So
what's interesting is the choice and use of colors in a site are unique enough that
you can say it's a fingerprint, essentially. Very interesting.

Steve: Yup. And the other nice thing about this is, when you think about it - because
we're all twitchy now about fingerprinting; right? So this is something that absolutely
destroys the image. Like you're not in any way storing a representation of an image that
could be sensitive. It's a hash of some deconstruction of the individual RGB values which
are counted in some fashion and just, you know. So, I mean, it's really - and the fact
that they're using a hash means that it can't be reversed; right?

Leo: That was the image with revenge porn. You don't want to circulate those
images.

Steve: Right.

Leo: That would be counterproductive.

Steve: And as we know, anytime you pump something through a hash, that's an
information lossy process, in this case on purpose. So they've come up with something
which is certainly not inexpensive to do, and it's like, wow, I didn't realize that was
happening in the background. And I've had that big, you know, I'm sure we've all,
Chrome users, the whole screen goes red.

Leo: Oh, yeah.

Steve: And it's like, "Warning, Will Robinson." It's like, whoa, what happened? There it
is, yup, there is a perfect sample of it that you just brought up.

Leo: Deceptive site ahead.

Steve: Right.

Leo: I just think it's a - this is a very kind of computer science-y solution. Because
the problem is, well, how do you, okay, we've got known phishing sites. How do you
fingerprint those and identify them in a speedy way in future? And I love it that they
said, you know, if we just look at the colors, that's enough.

Steve: Yeah.

Leo: I think it's great. And we can hash those very quickly.

Page 8 of 25Security Now! Transcript of Episode #829

Steve: And so the takeaway is probably do not put too many pictures of pumpkins on
your...

Leo: Stay away the pumpkins.

Steve: Might cause a false positive. Because pumpkins could be misconstrued.

Leo: You never know. You never know.

Steve: Okay. So this was very cool in our ransom news section. A universal decryptor for
all Kaseya victims. The industry recently received some news from Kaseya, who recently
posted a pair of interesting updates. The first one was posted last Thursday, on July
22nd, at 3:30 p.m. Eastern. This was their announcement.

They said: "Kaseya has obtained a universal decryptor key. On 7/21/2021" - so that was
the day before their posting, so last Wednesday - they wrote, "Kaseya obtained a
decryptor for victims of the REvil ransomware attack, and we're working to remediate
customers impacted by the incident. We can confirm that Kaseya obtained the tool from
a third party and have teams actively helping customers affected by the ransomware to
restore their environments, with no reports of any problem or issues associated with the
decryptor. Kaseya is working with Emsisoft to support our customer engagement efforts,
and Emsisoft has confirmed the key is effective at unlocking victims.

"We remain committed to ensuring the highest levels of safety for our customers and will
continue to update here as more details become available. Customers who have been
impacted by the ransomware will be contacted by Kaseya representatives."

Leo: Oh, by the way, and forced to sign an NDA.

Steve: Ah, interesting.

Leo: So, yeah.

Steve: I did see reference to the NDA, but I didn't track that down. Then yesterday, on
Monday - oh, to sign an NDA not to disclose that they were a victim and, like, raise the
profile of the attacks on Kaseya.

Leo: And I wonder if also Kaseya wants to hide the fact that they almost certainly
bought this decryptor from the REvil gang; right?

Steve: Well, so then, yesterday, Monday, July 26th, at 1:00 p.m. Eastern, they updated
what they had posted, writing: "Throughout this past weekend, Kaseya's Incident
Response team and Emsisoft partners continued their work assisting our customers and
others with the restoration of their encrypted data. We continue to provide the decryptor
to customers that request it, and we encourage all our customers whose data may have
been encrypted during the attack to reach out to your contacts at Kaseya. The decryption

Page 9 of 25Security Now! Transcript of Episode #829

tool has proven 100% effective at decrypting files that were fully encrypted in the
attack."

Next paragraph: "Kaseya has maintained our focus on assisting our customers. And when
Kaseya obtained the decryptor last week, we moved as quickly as possible to safely use
the decryptor to help our customers recover their encrypted data. Recent reports have
suggested that our continued silence on whether Kaseya paid the ransom may encourage
additional ransomware attacks, but nothing could be further from our goal. While each
company must make its own decision on whether to pay the ransom, Kaseya decided
after consultation with experts to not negotiate with the criminals who perpetrated this
attack, and we have not wavered from that commitment. As such, we are confirming in
no uncertain terms that Kaseya did not pay a ransom, either directly or indirectly through
a third party, to obtain the decryptor."

Leo: Oh. So where did they get it?

Steve: So thanks to our podcast, which unfortunately, Leo, you missed because it's what
I did two weeks ago, that was titled "REvil's Clever Crypto," we know exactly how a
single campaign-wide multi-system universal decrypting tool could be provided. Thanks
to the dual side-by-side encryption of the private half of each system-specific key pair,
either the REvil affiliate themselves could have been induced to provide their private key
for the entire Kaseya campaign or, up a level in the hierarchy, the REvil gang themselves
could have provided a universal decryptor which would have been effective for all of that
affiliate's victims, among which Kaseya would certainly have been the most prominent.

Leo: As I remember, REvil was offering it. I think it was $20 million for the
universal...

Steve: 70.

Leo: 70. Well.

Steve: 70. And so what we presume sort of that goes, I think corresponds to last week's
podcast, which was titled "REvil Vanishes," we could presume...

Leo: That they got the money.

Steve: ...pressure. Well, either they got the money, or they got pressure; right? It's got
to be the case that law enforcement in Russia, responding probably to political heat...

Leo: Maybe. Maybe you want to hand over key.

Steve: Yeah.

Leo: Would be good if you do.

Page 10 of 25Security Now! Transcript of Episode #829

Steve: And what's so cool about the nature of the hierarchy is that either the affiliate
who may have also been knowable could have been told, okay, you're giving up this key
for the Kaseya attacks because you have to. Or REvil could have been asked to provide
the key to decrypt all of the affiliates' work. So we'll never know what transpired. But the
good news is all of the Kaseya victims get decrypted. And I think it supports the
contention, further supports it, that I voiced last week, that we can expect to see future
ransomware attacks and attackers working to deliberately remain under the radar.

From the standpoint of REvil and their affiliate, the Colonial Pipeline, the JBS Foods, and
the Kaseya attacks have been catastrophic for them. You know, they were not good
results because they became far too public, and thus they became political. So anyway,
I'm sure that the lesson that's been taken away, that they have taken away, is to make
much smaller waves in the future. Yes, we know that there's money to be made, but not
when you make too much at once. That's just not - that just doesn't have a good
outcome here.

Okay. The printer driver used by, it's estimated, hundreds of millions of HP, Samsung,
and Xerox printers turns out to be exploitable. A researcher by the name of Asaf Amir
with SentinelLabs gave HP, Samsung, and Xerox, although primarily HP because, as we'll
see, it was OEMed to the other two - a generous five-month vulnerability pre-disclosure
quiet period of what he and his team discovered. So HP was notified last February, five
months ago. Microsoft has incorporated its update into one of the very recent Windows
updates. The SentinelLabs vulnerability disclosure was just published last Tuesday. It
contains four bullet points by way of its Executive Summary.

They said: "SentinelLabs has discovered a high-severity flaw in HP, Samsung, and Xerox
printer drivers. Since 2005, HP, Samsung, and Xerox have released millions of printers
worldwide with the vulnerable driver. SentinelLabs' findings were proactively reported to
HP on Feb 18th, 2021 and are tracked as CVE-2021-3438, marked with a CVSS Score of
8.8. HP released a security update on May 19th to its customers to address the
vulnerability." And somewhere I saw that Microsoft had incorporated that update into
their own Windows Update, thank goodness, otherwise this thing would be a serious
pain.

So what Asaf and his team discovered was a trivial-to-exploit flaw affecting the printer
drivers used by a large family of printers which have been continuously shipping since
2005. Leo, 2005 is the year we began this podcast.

Leo: Yeah.

Steve: So as long as this podcast has been running, all of the printer drivers in HP's
printers have been shipping with this flaw.

Leo: Ugh.

Steve: Yeah. Here's the way Asaf describes what happened and what they found:
"Several months ago," he wrote, "while configuring a brand new HP printer, our team
came across an old printer driver from 2005 called SSPORT.SYS, thanks to an alert by
Process Hacker once again." Now, we'll be looping back, and I'm going to tell everybody
about Process Hacker so you don't need to take a note yet. He said: "This led to the
discovery of a high-severity vulnerability in HP, Xerox, and Samsung printer driver
software that has remained hidden for 16 years. This vulnerability affects a very long list

Page 11 of 25Security Now! Transcript of Episode #829

of over 380 different HP and Samsung printer models, as well as at least a dozen
different Xerox products."

So the disclosure page shows a sample. These guys, SentinelLabs' vulnerability
disclosure, lists some printers. But Leo, go to the page here in the show notes, at the top
of page 5 of the show notes. And then expand under the affected products. It just says
"affected products" with a little plus sign. Stand back when you click on that and start
scrolling because this thing goes on and on and on and on and on.

Leo: Wow.

Steve: So, yeah. This is a list.

Leo: A lot of these are Samsung.

Steve: Yeah, well, because they were OEMing it from HP.

Leo: Oh, boy.

Steve: Yeah. "So just by running the printer software, the driver gets installed and
activated on the machine, regardless of whether," he writes, "you complete the
installation or cancel." You can even cancel when it starts to install. It doesn't matter. It
already got in. "Thus, in effect," he writes, "this driver gets installed and loaded without
even asking or notifying the user. Whether you are configuring the printer to work
wirelessly or via a USB cable, this driver gets loaded. In addition, it will be loaded by
Windows on every subsequent boot. This makes the driver a perfect candidate to target
since it will always be loaded on the machine, even if there is no printer connected.

"The vulnerable function inside the driver accepts data sent from User Mode via IOCTL
(Input/Output Control) without validating the size parameter. This function copies a
string from the user input using strncpy" - standard library, C library function (S-T-R-N-
C-P-Y) - "with a size parameter that is controlled by the user. Essentially, this allows
attackers to overrun the buffer used by the driver and run code that they have provided."

Okay. So just stop for a minute. We have, for the last 16 years, every instance of those
380 HP printers and all of those Samsungs and a handful of Xeroxes, when the drivers
touch your system, installs this SSPORT.SYS device driver, setting it up to run at boot. It
contains an IOCTL API call that I'll explain in a second, which allows any program in user
mode to gain system privileges on the kernel. And it's been in essentially all Windows
systems that have any of these, that have ever touched any of these 380 different HP
printers for the last 16 years.

Okay. Windows IOCTL API is explicitly a means for allowing unprivileged user mode code
running in Ring 3 to communicate with drivers, with services and other kernel code in
Ring 0. It's an officially sanctioned and supported Windows API. So what we have here
once again is a trivial-to-exploit means for bypassing Windows' entire process and user
security privilege model. Last week we were introduced to the idea of signing a malicious
driver, a printer driver, for installation somewhere within an enterprise's network,
whereupon Windows would auto load it through their PointAndPrint facility, which
Microsoft subsequently assured us was "vulnerable by design," their exact words.
Therefore, it truly wasn't a bug. It was a feature.

Page 12 of 25Security Now! Transcript of Episode #829

Now we learn that for 16 years, from 2005 until a month or two ago, when HP posted
this on their site, which no one would see, but Microsoft presumably incorporated it into a
Windows Update - maybe it was three weeks ago. Until a month ago, when this was
fixed, for hundreds of millions of Windows systems worldwide it was no longer necessary
to bother with even malicious printer drivers because a popular, often-installed printer
driver would, you know, you didn't have to bother with all that muss and fuss. Just find
any machine with the SSPORT.SYS device driver present, and pass a specially crafted
IOCTL API call to it, immediately taking over the system.

And then they continued. The guys at Sentinel said: "An interesting thing we noticed
while investigating this driver is the peculiar hardcoded string: 'This String is from Device
Driver@@@@.'" They wrote: "It seems that HP didn't develop this driver, but copied it
from a project in Windows Driver Samples by Microsoft that has almost identical
functionality." They said: "Fortunately, the MS sample project does not contain the
vulnerability." So they took the sample code; you know? Where have we heard this
before, Leo? Remember UPnP, where Intel posted sample UPnP source, saying here's
some code. Don't use it. And then of course everybody did. And it contained a flaw that
then, surprise, everybody had.

Okay. So in this case the modification they made to the sample project was what induced
the flaw, and that's what they've been shipping for 16 years. So they said, the Sentinel
guys, the SentinelLabs guys: "An exploitable kernel driver vulnerability can lead an
unprivileged user to a SYSTEM account and run code in kernel mode, since the vulnerable
driver is locally available to anyone. Among the obvious abuses of such vulnerabilities are
that they could be used to bypass security products. Successfully exploiting a driver
vulnerability might allow attackers to potentially install programs; view, change, encrypt
or delete data; or create new accounts with full user rights. Weaponizing this
vulnerability might require chaining other bugs as we didn't find a way to weaponize it by
itself given the time invested." In other words, they didn't bother taking the time. Bad
guys would.

And they finished: "Generally speaking, it is highly recommended that in order to reduce
the attack surface provided by device drivers with exposed IOCTL handlers, developers
should enforce strong ACLs (Access Control Lists) when creating kernel device objects,
verify user input" - uh-huh, that is, not give the user control over the length of the buffer
that's allocated, which it then fills - "and not expose a generic interface to kernel mode
operations."

Okay. Now, stepping back from the specifics, as I mentioned above, the world has
apparently dodged another bullet. We don't know of this vulnerability having been
discovered and used to perform effortless elevation of privilege attacks on Windows
systems during the previous 16 years. But the ability to do so has been there since, as I
said, the start of this podcast. But we should take note that this highlights a fundamental
and significant security weakness in the architecture of Windows, which can never be
remedied. We saw a strong hint of this design flaw last week, as I mentioned, when
Mimikatz's Benjamin Delpy demonstrated how a malicious printer driver, once signed and
installed into a low-value machine, could be proactively pulled throughout an enterprise
by Windows PointAndPrint feature, which was designed to silently and automatically
install any needed drivers so that its users didn't need to be bothered with any of that.

But Windows' problem is actually much worse, as this serious problem with a widespread
HP printer driver has just demonstrated. Windows drivers, like core services, run in the
kernel. Userland applications can communicate with them in two ways - through the
normal data channel, which is opening a device and then sending output to it, you know,
we might call this use "in band use" of the driver. But drivers can also be communicated
with out of band through the use of the IOCTL API. A printer driver, for example, might
provide IOCTL services to user mode applications for setting its page orientation,

Page 13 of 25Security Now! Transcript of Episode #829

checking on the toner level, or communicating readiness and error conditions. You know,
all those things now that drivers do that's not just dumping the page out. That's all
accomplished through the IOCTL API. So it exists. And it's heavily used.

So Windows provides both for in-band and out-of-band communication between
applications and drivers. That's not unusual. But these drivers, as I mentioned, run with
kernel-level privilege. And the out-of-band IOCTL API deliberately crosses privilege
boundaries. This means that any flaw existing in any driver can be used by any code
running on the system to compromise that system. And as we've just seen, these drivers
are not all written, vetted, and provided by Microsoft. More often, they're provided by
third parties to make their devices work with Windows. Therefore, any mistake made by
any device driver vendor which is discovered by anyone malicious can potentially be used
to compromise an entire system containing that driver.

A long time ago, in a galaxy far, far away, long before network security was even a thing,
this design made sense because remote attackers operating from hostile foreign
countries were not able to lurk in our machines. But we've often used the apropos model
of a chain of individual links, where the strength of the entire chain is limited by the
strength of its weakest link. In Windows, the weakest links may be flaws lurking in the
services and device drivers provided by well-meaning developers whose code has never
been thoroughly stress-tested and security vetted because the moment it started to work
without crashing, it was declared finished. And it was packaged up and shipped.

So in that world, which is now unfortunately this world, it doesn't take much imagination
to picture an attacker who gets into a machine as a low-privilege user. They take an
inventory of the system's third-party services and device drivers, then cross-reference
that inventory against their own internal stash of never disclosed, privately known, third-
party service and device driver exploits to determine which entry point into the kernel
this system will offer.

Leo: And the good news is, thanks to hashing, this now takes seconds less. It's
probably pretty instantaneous.

Steve: Exactly. So this is a problem. We don't want to talk about it because there's
nothing we can do about it. Our userland code has to talk through to the Ring 0 to talk to
the device drivers that are down there with those privileges. This just happened to come
to light when these guys thought, wait a minute, SSPORT.SYS. That's from 2005, 16
years ago. Has anyone looked at its security? And no.

Leo: No.

Steve: And what they found was a trivial-to-exploit buffer overflow. Now, this would be a
disaster if this was something that Microsoft weren't able to fix quickly. The problem is,
and this is what I hope I've - the point I've driven home. This is like Colonial Pipeline;
right? It was so big that it got, you know, it was a disaster, and it got remedied. Or
Kaseya. But what the ransomware guys now know they have to do is distribute their
attacks. Unfortunately, what we have is a case of distributed drivers. Rather than, you
know, this one, this big HP one was such a mess that Microsoft said, oh, crap, and like
immediately gave it a Patch Tuesday fix. The problem is who knows what serious security
flaws are lurking in all the little smaller third-party things that exist in Windows that
nobody has bothered to take a look at. Again, I would not be surprised.

Page 14 of 25Security Now! Transcript of Episode #829

We talked about some time ago the model of vulnerability becoming publicly known for
some service that has a public exposure on the Internet, and the bad guys have - no
doubt, Leo, it's been hashed - a big hash table of port numbers that immediately lead
them to the exploits they know about to take advantage of that, the appearance of that
thing on some port. And they jump on it before it can get patched. So anyway, nothing
can be done. But we are on essentially an increasingly brittle-seeming operating system
platform. And as we're going to learn by the end of this podcast, thank you, as we're
going to learn by the end of this podcast, even 11 doesn't fix it.

And before we take our second break, I wanted to mention, bring to our listeners' notice
something that these guys used that brought this to their attention called Process
Hacker. The SentinelLabs guys discovered this whole HP printer driver mess when this
thing called Process Hacker proactively popped up a notification that this SSPORT.SYS
service had just been created as a result of something they were doing. I for one would
love the idea of being proactively notified when something has just added a background
service or driver to my system. Maybe it's something I'm expecting. But if it's not, I want
to know.

So I wanted to take a moment to shine a light on the tool they used known as Process
Hacker. Many of us are familiar with Mark Russinovich's excellent Sysinternal Tools. One
of them, Process Explorer, is immediately reminiscent of Process Hacker. It looks like -
Process Hacker I guess I would describe as Process Explorer on steroids. And it's open
source.

Leo: It's open source, that's awesome.

Steve: Open source. So Process Hacker has taken what Mark has done much further. It's
open source. It's still at SourceForge, but it also has a GitHub presence. It runs on
anything from Win7 on. It shows a download count of 6.5 million. It shows 34
contributors, 814 forks, and is being actively developed and maintained. It bills itself as a
free, powerful, multipurpose tool that helps you monitor system resources, debug
software, and detect malware. Its bullet-pointed feature list says a detailed overview of
system activity with highlighting. Graphs and statistics allow you to quickly track down
resource hogs and runaway processes. Can't edit or delete a file? Discover which
processes are using that file. See what programs have active network connections and
close them if necessary. Get real-time information on disk accesses and who's doing
them. View detailed stack traces with kernel mode, WOW64, and .NET support. Go
beyond services .msc; create, edit, and control services. Small, portable, no installation
required. 100% free open software under GPL v3.

Leo: That's really great.

Steve: And it offers a plug-in architecture for extensions. So it's able to sit quietly in the
background, alert when something is setting up permanent residence on any Windows
machine. So anyway, if any of you listening haven't completely given up on the idea that
you might still have some remaining shred of control over the machine that's sitting in
front of you, google "process hacker," and you'll find it. It comes up first of many hits.

Leo: It's on SourceForge, SourceForge.io?

Steve: Exactly.

Page 15 of 25Security Now! Transcript of Episode #829

Leo: Wow. That's awesome. I love it. Yeah, so, yeah, I wonder if, yeah, I wonder if
Mark Russinovich is aware of it. That's hysterical.

Steve: Okay. So last Thursday's GitHub blog posting was titled "GitHub Brings Supply
Chain Security Features to the Go Community." And it's very short. They said: "The
global Go community embraced GitHub from the beginning, both as a place to collaborate
on code and a place to publish packages, leading to Go becoming one of the top 15
programming languages on GitHub today. We're excited to announce that GitHub's
supply chain security features are now available for Go modules, which will help the Go
community discover, report, and prevent security vulnerabilities."

And then commenting on GitHub's announcement, Google's Go Language, also GoLang,
product lead, Steve Francia, he said: "Go was created, in part, to address the problem of
managing dependencies in large-scale software. GitHub is the most popular host for
open-source Go modules. The features announced today will help not just GitHub users,
but anyone who depends" - pardon the pun - "on GitHub-hosted modules. We are thrilled
that GitHub is investing in improvements that benefit the entire Go ecosystem, and we
look forward to more collaborations with them in the future."

Okay. So a little bit of background. The Go Language itself is rapidly gaining ground with
76% of respondents in a developer survey last year, in 2020, saying that Go is now used
in some form in the enterprise. So more than three out of four are saying, yeah, we've
got Go here.

Go's module system was introduced two years ago, in 2019, to make dependency
management easier and version information more explicit. And as a consequence, Go
module adoption is also increasing. 96% of those surveyed said that these modules are
used for package management, which was a 7% increase over the previous year, 2019.
And 87% of respondents reported that only Go modules are used for this purpose. And
an overall trend in the survey appears to suggest the use of other package management
tools is consequently decreasing. So Go did a good job with package management; and
we're seeing, again, inertia is strong. If what you're doing is not broken, the tendency is
not to change it. But we're seeing a drift, maybe like in this case 7% a year.

So GitHub's blog posting detailed four primary areas of improvement in supply chain
security that are now available for Go modules. The first is GitHub's advisory database,
which is an open source repository of vulnerability information containing over currently
150 Go advisories. And that number is growing every day as they curate existing
vulnerabilities and triage newly discovered trouble. The database also allows developers
to request CVE IDs for newly discovered security issues. GitHub also now provides the
dependency graph, which can be used to monitor and analyze project dependencies
through go.mod, as well as to alert users when vulnerable dependencies are detected.

And GitHub has introduced Dependabot in this update, which will proactively, and I love
this, send developers a notification when new vulnerabilities are discovered in Go
modules that affect their projects. I'm sure our listeners all know how great I think it is
that we're talking about proactive notification. You know, developers will still need to
seriously heed any notifications they receive. But it's not possible to heed notifications
that you never receive.

So this is certainly a step in the right direction. And being proactive, I think, that is the
future. Automatic pull requests can be enabled to patch vulnerable Go modules, and
notification settings have been updated for fine-tuning. GitHub said that when
repositories are set to automatically generate pull requests for security updates,

Page 16 of 25Security Now! Transcript of Episode #829

dependencies tend to patch up to 40% faster than when they're not set automatically.
And actually, I would think that would be even better than that. But, you know, yay.

So, you know, we've talked, I would guess I would say incessantly on this podcast, about
the power that automated and automatic background updates have to rapidly remediate
security vulnerabilities. Whenever I do this, I'm reminded by some of our intrepid
listeners that with automation comes some risk of subversion. And, yes, that's inarguably
true. But, for example, this month alone Microsoft patched 117 flaws, nine of which were
zero-days. Four of those were being actively exploited in the wild. As it is, Windows, as
we've been talking about so far, is barely holding together. It's not possible any longer to
conceive of a world without Windows automatic updates, where as it was once upon a
time, every individual end user was obligated to go get and manually install Windows
updates onto their own systems. Can you imagine that today?

And those old-timers among us can probably recall the controversy that surrounded
Microsoft's decision, back when they made it, to take that job out of our hands. Cranky
old guys who were still imagining that they had any real control objected to the idea that
their beloved hand-built machines might be changed without their prior approval and
oversight. Uh-huh. Well, we had to get over it. That day has long since passed. And I
believe we're headed much farther down that path. Like it or not, warts and all, it's the
right path for us to take.

In time, I think it's going to become just as clear that the only way for complex, multi-
component, multi-sourced software to be built and maintained will be for similar
dependency graph-driven automated supply-chain management become standard
operating procedure. Developers are just as busy as end-users, if not more so. And yes,
it's true that automated supply-chain management brings risk of supply-chain attack. But
we're heading in with our eyes open, and this is not the first time we've done this sort of
thing. Automating the entire software lifecycle, from the developer's fingers on the
keyboard, writing the code, all the way out to code running on machines, even IoT
devices, creating the ability to write and publish incremental updates which then securely
flow all the way out as binary updates everywhere that code appears, anywhere in the
world, is where we need to eventually arrive.

And yes, it will create a mess. It will be a mess of overhead that we do not yet have
today. As an analogy, look at what a mess the addition of secure boot has created, an
incredible amount of overhead that's beginning to appear in every system to address a
problem that almost none of those systems will ever have. But it's there everywhere. And
what does it do? All it does, when it isn't being bypassed, is attempt to assure that every
step of the operating system boot process uses verifiably signed code. That's it. But it's a
mess.

In the future, we're going to muck up our development processes similarly because we
have no choice. It's going to be a mess, too. But I think it's as inevitable as was allowing
Windows to update itself. It's just not possible, Leo, to imagine a world where the end-
users of Windows today are like responsible for keeping their systems secure. Thank god
Microsoft did that back then, even though it did annoy those of us who used to know
what the files on our hard drives actually did.

One quick note. Someone tweeted whose Twitter name is JF. He tweeted from @jfparis.
And he said: "Hi, @SGgrc. I listened to you repeatedly trashing QNAP over several
shows. Quality of their software is doubtful, I agree. But unlike many of their peers, it is
relatively easy to replace it with a clean Linux distro." And so I just wanted to reiterate
that. We've mentioned it before. I wanted just to, since it popped up in my Twitter feed,
I thought, yeah, that's worth just reminding people. It's like, you know, if you have a
QNAP machine, I would argue, get it off the Internet. I mean, hopefully you've taken that
advice a long time ago. But the fact that it can receive a standard Linux or Unix or some

Page 17 of 25Security Now! Transcript of Episode #829

distro means you could give it a well-maintained, far more security-hardened platform for
the future, and that it's probably worth doing. And lots more capabilities.

Leo: But in your defense, that would be like not criticizing Windows because, well,
you can always install Linux on that PC. You know.

Steve: Well, no. I guess I would not criticize a laptop because you could scrape Windows
off of it and put Linux on it.

Leo: Right, yeah. Or desktops, too. Yeah. I mean, but you criticize Windows because
it's Windows. And when you talk about QNAP, you're not just talking about the
hardware, you're talking about the software, yeah.

Steve: Right, that's a good point. That's a good point. Okay. SeriousSAM & PetitPotam.
The first of these two new problems with Windows was just developing, as I mentioned
at the top of the show, as last week's podcast was being produced. We noted last week
that it had been preliminarily named "HiveNightmare" since we were all in a "nightmare"
mode following the many recent printer nightmares of the month. But since then, the
name SeriousSAM appears to have taken root, SAM being the abbreviation for Windows'
Security Account Manager (SAM). And I prefer this name since the trouble is entirely
separate from any printer-related trouble. Unfortunately, "Serious Sam," as you
mentioned, Leo, is also the name of a 20-year-old, and still...

Leo: Very good game.

Steve: ...relevant, first-person shooter.

Leo: It's really good.

Steve: Yeah. And googling just the phrase "Serious Sam" will return lots of gaming hits
rather than any security information.

Leo: Lot of nostalgia, yeah.

Steve: So anyway, we will take a look at this. Last Monday, on the 19th, security
researchers began reporting that the Security Account Manager file on Win10 and 11 was
READ-enabled for all local users. That was quite deliberately never true of Windows
before 10. It's not good, and it is a critical security mistake.

The Security Account Manager file, as its name suggests, stores sensitive security
information including storing and caching all of the hashes for the user and admin
passwords the system is aware of. Having this file's security access rights enabled for
read access by everyone means that attackers with any access to the system can use
this SAM file information, which they should never be able to read, to escalate privileges
or access other data. In other words, it's a big no-no.

Page 18 of 25Security Now! Transcript of Episode #829

The next day Tuesday, that is, the following day, the next day on Tuesday, Microsoft
immediately issued an out-of-band advisory for this vulnerability, which is now being
tracked as CVE-2021-36934. And as of last Thursday, the vulnerability has been
confirmed to affect Windows 10 version 1809 and all later, as well as Windows Server
2019 and all later, including 20H2.

A public proof of concept is available that allows non-admin users to retrieve all registry
hives. And researcher Kevin Beaumont, who tweets as @GossiTheDog, has released a
demo that confirms that it's both possible and practical to obtain local hashes and pass
them to a remote machine to achieve remote code execution as SYSTEM on arbitrary
targets in addition to privilege escalation. In other words, ow.

CERT's Coordination Center has published detailed vulnerability notes on this CVE titled
"Microsoft Windows gives unprivileged user access to system32\config files," meaning
that directory. They said: "Multiple versions of Windows grant non-administrative users
read access to files in the C:\Windows\system32\config directory. This can allow for local
privilege escalation. With multiple versions of Windows, the BUILTIN_Users group" -
okay, so that's the group, in terms of the Windows Access Control management, which
has been given read-execute permissions to files in that system32\config directory. So
it's the built-in users group.

If a VSS shadow copy - VSS shadow copy is the system which allows the snapshotting of
an in-use file system so that a moment in time can be captured. Then Windows can
continue reading and writing to the file system while that captured moment in time can
be compressed or an image can be made of it, or it can be spooled off somewhere and so
forth. That's VSS shadow copy. So they said, you know, and also that's the system, like a
snapshot is made before you apply a Windows Update every month so that, if it caused a
complete collapse of your system, you're able to roll back the changes that were made
after that snapshot of the file system was taken.

So they said: "If a VSS shadow copy of the system drive is available" - which almost
always will be as a consequence of the fact that they're often being taken - "a non-
privileged user may leverage access to these files" - which again they should never have
access to - "to achieve a number of impacts, including but not limited to extract and
leverage account password hashes; discover the original Windows installation password;
obtain DPAPI computer keys, which can be used to decrypt all computer private keys."
DPAPI is Windows Data Protection API, which has been part of Windows since Win2000.
It offers Windows clients various simple and straightforward cryptographic services.
Windows makes use of its own API, this DPAPI, to protect various of its own sensitive
local private key stores. But as always, the master key must be around somewhere. This
flaw makes it available. And, finally, "obtain a computer machine account which can be
used in a so-called 'silver ticket' attack."

Okay. So the VSS shadow copies may not be available in some configurations. However,
as long as your system has a drive larger than 128GB, when you perform a Windows
Update or use Windows setup to install an MSI package file, a VSS shadow copy will be
created automatically to allow a system change roll-back. Okay, so here's some cool
things. To see whether your system, any Windows system, has one or more VSS shadow
copies available, you can issue the following command from a privileged command
prompt. So you'll want to right-click on command prompt, then select Launch or Use As
Administrator. That'll give you an administrative command prompt. Then use the
command vssadmin (V-S-S-A-D-M-I-N) space list space shadows. It'll say none available,
or it'll list them. Okay. So that's the first thing, do you have shadows available?

To check if a system is vulnerable, that is, if your system right now is vulnerable to this,
from a non-privileged command prompt, because you want this to fail because you're
asking the question without privilege, you type the command icacls, again icacls, and

Page 19 of 25Security Now! Transcript of Episode #829

then the path name to the SAM file. So that would be your Windows directory, typically
it's C:\Windows\system32\config\sam. So icacls, space, and then the path to the SAM
file.

If it succeeds, it will print out a bunch of stuff ending in "Successfully processed 1 file,
failed processing 0 files." Again, from a non-privileged command prompt, that would tell
you that your system is right now vulnerable. That is, your built-in users Windows ACL
privilege has this read-execute privilege, which you should not have. That was a mistake.
If you are told when you do this that that path repeated, and then access is denied,
"Successfully processed 0 files, failed processing 1 file," that is, Windows was unable to
access the ACLs for that, as it should not be able to, that's good. That means your
system is safe. So that would allow you to verify.

There's currently no patch from Microsoft for this trouble, though I'll be surprised if we
don't see something soon because this is big. In the meantime, Microsoft did release
remediation guidance for Windows 10 and 11 users which mitigates the risk of immediate
exploitation of this. For the measures to be effective, it's necessary to first restrict access
by changing the ACLS, and then delete any existing shadow copies. Because they will be
copies of a pre-ACL fixed system, you don't want anyone to have access to those. If you
needed to, you could create a replacement shadow copy immediately after that.

So anyway, the way to do this, and I've got all of this, by the way, in the show notes if
anyone can't find it online, you would open up a command prompt or a PowerShell with
admin rights. And then you run the following command: icacls, space, and then a path to
the config*.*. So C:\Windows\system32\config*.*, then space /inheritance:e. Hit
ENTER, problem solved. So it is trivial to fix this problem. So it can't take Microsoft long
to just push out something. Maybe they'll even do it again through Windows Defender
because they're constantly updating that, and just fix the permissions on all the files in
that directory.

Once you've done that, then you delete any volume shadow copies that you may have. It
turns out that's also easy to do. I've got that in the show notes. It's vssadmin space
delete space shadows, and then some command prompt parameters that I'll let you look
up. Again, the very bottom of page 11 of the show notes. Then you probably want to go
back and do the vssadmin list shadows to confirm that they're all gone. Now you're safe.
And at this point, if you wanted to, you could manually take a snapshot. But on the other
hand, next time anything does anything to your system that needs the ability to roll
back, you'll have one.

So it would really be interesting to know what happened. You know, was this a change
made during development that they forgot to change? Was there something they were
going to do where they meant maybe to change one file, but they changed all of them in
the directory? I mean, how do you account for this? It's just amazing. But it also sort of
suggests that there is a lack of regression testing that ought to be in place. You'd think
that a new installation would have regression tests run against it to make sure that
exactly this kind of thing hasn't happened. But somehow that didn't happen since the
release of Windows 10. And again, this is another one of these problems. Since Windows
10, what was that, that very first build, this has been wrong. And anybody with no
privileges could get in, and into something that they should absolutely be excluded from.
Yet they've been able to. So is it any surprise that we've been seeing the kinds of
problems we have been?

Okay. Next one is PetitPotam, a French-based, I mean, a Paris-based French security
researcher whose GitHub handle is topotam, and who appears to have a thing for
hippopotamuses, Leo. We'll get to that in a second, yeah. That's from his GitHub page.
He recently discovered and went public with, like what day is it, another serious security
flaw in Windows which can be exploited to force remote Windows servers to authenticate

Page 20 of 25Security Now! Transcript of Episode #829

with an attacker, thus sharing their NT LANMAN authentication details and certificates.
Okay, no, given that this researcher's GitHub page shows a bunch of apparently quite
happy and sort of adorable hippopotamuses, it appears that the Potam of PetitPotam is
meant to put us in mind of a small hippopotamus.

Okay. So what's the new problem? The trouble surrounds a means of abusing Microsoft's
MS-EFSRPC Protocol - EFS as in Encrypted File System, and RPC as in Remote Procedure
Call. So MS-EFSRPC. It's the network protocol which enables Windows machines to
perform operations on encrypted file system data, stored on remote encrypted NTFS-
based systems. But an encrypted file system is not required for this attack to work, just
the protocol. The PetitPotam attack proof-of-concept code allows an attacker to send
SMB, our good old friend Windows File and Network Printer Sharing and all that over 445
port, requests to a remote system's MS-EFSRPC endpoint interface, to cause the target
victim computer to initiate an authentication procedure and thus share its authentication
details.

Attackers can collect this data and abuse it as part of an NTLM relay attack, you know,
NT LANMAN, right, LAN Manager, relay attack, to gain access to remote systems on the
same internal network. PetitPotam cannot be exploited remotely across the Internet,
thank god, you know, thank goodness. It's an attack that's designed to be used inside
large corporate networks where attackers could use it to force domain controllers to
cough up their NTLM password hashes or authentication certificates. This could then in
turn lead to the complete takeover of a company's internal network. So we can see why
Microsoft responded with surprising speed to the new threat created by this public
publishing of a proof of concept.

Okay. So there's a related exploit using MS-RPRN, okay, MS-RPRN. That's their print
service remote protocol, though the developer of the PetitPotam exploit tweeted Sunday
before last on the 18th when it first pointed the world to his discovery. So he said: "Hi
all. MS-RPRN to coerce machine authentication is great, but the service is often disabled
nowadays by admins on most orgs. Here" - and this is the birth of the PetitPotam.
"Here," he tweeted, "is another way we use to elicit machine account auth via MS-
EFSRPC. Enjoy!! :)." And then a link to his GitHub page. This was earthshaking.

In response to that, four days later, another researcher replied: "Finally finished testing
it. It's quite brutal! Network access to full Active Directory takeover." He said: "I really
underestimated the impact of NTLM relay on PKI #ESC8. The combo with PetitPotam is
awesome! Everything is already published to quickly exploit it." Which, yeah, is exciting
these guys, but it's a disaster for the enterprise. "Tests carried out by multiple security
researchers have shown that disabling support for MS-EFSRPC did not stop the attack
from working. It has been tested against Windows Server 2016 and Windows Server
2019 systems, but security researchers believe PetitPotam impacts most Windows server
versions supported today." In other words, so far it has affected all that they've tested.

Florian Roth, the Head of Research at Nextron Systems, was quoted in The Record
saying: "The problem with this type of attack is that it will take a considerable amount of
time and consideration to develop appropriate countermeasures. These are design flaws
that are more difficult to fix. It's much easier to just patch a vulnerable font driver DLL or
Internet Explorer library." In other words, we're here again with a fundamental flaw in a
core Windows protocol where whatever fix is found must also not break existing facilities.
Again, it's not a bug, it's a feature. But it's a bad feature.

The TrueSec, TrueSec.com, has a blog posting where they describe in a little more detail
exactly how this happens. And it will certainly make any of our corporate listeners sit up
and take notice. Hopefully all that they'll be doing when they're hearing this on the
podcast is going, yeah, yeah, yeah, did it all right. Here's what TrueSec said: "This
advisory" - that is, theirs - "is related to the recent Certified Pre-Owned whitepaper

Page 21 of 25Security Now! Transcript of Episode #829

discussing the possible abuse of the Active Directory Certificate Services," and then they
said, "AD CS role in combination with Credential Relay Attacks such as MS-RPRN and the
more recent MS-EFSRPC aka PetitPotam.

"The MS-EFSRPC protocol can be used to coerce any host, including Domain Controllers,
to authenticate to a specific destination. The designated destination then forwards the
NTLM" - again, NT LANMAN - "credentials to another device that is configured to accept
the Domain Controller's certification, resulting in an abuse of those services. An attacker
can target a Domain Controller to send its credentials by using the MS-EFSRPC protocol
and then relaying the DC NTLM credentials to the Active Directory Certificate Services AD
CS Web Enrollment pages to enroll a domain controller certificate. This will effectively
give the attacker an authentication certificate that can then be used to access domain
services as a domain controller and compromise the entire domain.

"AD CS is especially interesting as it offers role services that by default accept NTLM-
based authentication." Let me repeat that because that's going to come back in a minute.
"Active Directory Certificate Services is especially interesting as it offers role services that
by default accept NT LANMAN-based authentication." Then they finish: "The Certificate
Authority Web Enrollment and Certificate Enrollment Web Service can be abused to issue
certificates by performing NT LANMAN Relay Attacks using MS-EFSRPC, MS-RPRN or
other API that offer similar behavior."

Okay. So I'm going to conclude with a couple of points and observations. First, this is of
no concern for end-user Windows people.

Leo: Oh, should have said that upfront. Oh, geez. Could have saved me a lot of
acronyms.

Steve: This is entirely a high-end enterprise worry when an organization is running with
Domain Controllers and Active Directory Certificate Services. So if you don't already
understand all of this, if you don't understand that you're not vulnerable, I mean, I'm
sorry, if you don't...

Leo: You're definitely not.

Steve: ...already understand that you are - if you don't understand that you might be
vulnerable...

Leo: Right.

Steve: ...you definitely aren't.

Leo: Definitely not, yeah.

Steve: Right.

Leo: If you don't know what a domain controller is, you're fine.

Page 22 of 25Security Now! Transcript of Episode #829

Steve: You're fine. Second, when exploited, it provides a means for an attacker who is
already present on the victim's network to fully compromise and take over the entire
operation. That's obviously not good because it completely collapses all security
containment, enterprise-wide. But it is at least constrained to be a local-only attack.

Okay. Now, in response to this, Microsoft immediately blamed their old, but still widely
used and enabled-by-default NTLM (NT LANMAN) protocol. I have a link to what they said
in the show notes. I've excerpted for the podcast. "Microsoft is aware of PetitPotam,
which can potentially be used in an attack on Windows domain controllers or other
Windows servers. PetitPotam" - this is Microsoft writing - "is a classic NTLM Relay Attack,
and such attacks have been previously documented by Microsoft, along with numerous
mitigation options to protect customers."

Continuing, they write: "To prevent NTLM Relay Attacks on networks with NTLM enabled,
domain administrators must ensure that services that permit NTLM authentication make
use of protections such as Extended Protection for Authentication (EPA) or signing
features such as SMB signing. PetitPotam takes advantage of servers where the Active
Directory Certificate Services (AD CS) is not configured with protections for NTLM Relay
Attacks. The mitigations below outline to customers how to protect their AD CS servers
from such attacks." And then Microsoft goes on to describe what needs to be changed,
disabled, and blocked to thwart this attack.

Okay. Now, note that Microsoft calls it a "classic NTLM relay attack," as if everyone
should be aware that NTLM, which they once believed to be fabulously secure, has
become so completely broken that attacks on it are considered to be classic, like Coke.

Leo: Oh, yeah, of course.

Steve: And that as a result of NTLM's fully acknowledged crap security, it should never
be used unless there's really no other choice. Except for this. Now, I'm quoting an
imaginary, fully forthcoming Microsoft saying: "You just bought a brand new server for
your enterprise, and we've just installed a bunch of old and insecure crap on all of your
servers, just in case they might need to connect to something else that you may have
lying around that's also old and insecure. To eliminate any confusion about why all this
complex stuff might not be working, we turned everything on, and it's fully enabled, so
that your shiny new systems would just work out of the box without you needing to learn
anything about them, or even wonder for a minute why you couldn't just plug everything
in and have it all go. So it does. Because we're Microsoft, 'Vulnerable by Design.'"

Leo: Oh, lord. Sigh.

Steve: Leo, what's sad is it's true.

Leo: Yeah, there's no reason why that should be turned on.

Steve: It's true.

Leo: Probably not even included.

Page 23 of 25Security Now! Transcript of Episode #829

Steve: I'm not making this up.

Leo: If you need it, you could download it.

Steve: No, no, it's included.

Leo: Yeah, that's ridiculous.

Steve: That's why everybody has it. That's why it's a big worry. Microsoft literally has
their systems designed with everything on because they don't want a phone call. They
don't want somebody wondering what this error message means. They just want it to all
work. So it's up to the admin to go in and, oh, yeah, what about those classic NT
LANMAN relay attacks? Shall we do something about that? Are they still classic?

Leo: Oh, god.

Steve: It's just painful.

Leo: Yeah. No, you're absolutely right. There's no reason to include it, let alone
include it and turn it on, when 90% of people never use it.

Steve: Enabled by default, Microsoft said in their bulletin.

Leo: Well, it keeps people in business. That's why we can never stop hiring IT
professionals. So that's a good thing.

Steve: Like I said, the digits this podcast requires are going to push that little tag at the
bottom of the screen right off to the right, Leo. I'm going to come up with - because the
episode numbers are going to have so many digits there won't be room for...

Leo: Just a number. That's all we need. Just a number.

Steve: That's right.

Leo: Steve, you've done it again. A number of people in the chat are saying, "And
this is why we listen to Security Now!." You're absolutely right. It's unconscionable.
It's unconscionable. Steve does his thing at GRC.com. That's his website. That's
where you'll find SpinRite, world's best mass storage maintenance and recovery
utility.

Steve: It's rolling right off your tongue, Leo.

Page 24 of 25Security Now! Transcript of Episode #829

Leo: Yeah. It's currently at 6.0. 6.1 is coming. You can participate in the
development and get a free copy if you buy right now, GRC.com. While you're there,
check out all the other things Steve has for you, including this show, 16Kb as well as
64Kb audio versions of the show; really nicely written transcripts, so you can read
along while you listen, or search, which is a great feature. He also has a feedback
form there, GRC.com/feedback. But another way to get him, and I think probably
the easiest would be to slide into his DMs on Twitter. His Twitter handle is @SGgrc,
and his DMs are open.

We have 64Kb audio plus video versions of the show at our site, TWiT.tv/sn. You can
also subscribe in your favorite podcast player. That way you'll get it automatically. In
fact, do me a favor. If you're doing that, leave a five-star rating and a review for us.
Let the world know about Security Now!. It's very helpful to us. We also have a
YouTube channel dedicated to Security Now!. Lots of ways to consume it. Make it
easy.

We do this show Tuesdays, right after MacBreak Weekly. That's usually around 1:30
Pacific, 4:30 Eastern, 20:30 UTC. You can watch us do it live. There's a stream,
audio or video, at TWiT.tv/live. If you're watching live, of course, it's great to chat
live. There's a free chatroom at irc.twit.tv, along with a Discord chatroom. And we'd
love to see you join us during the live program. The chatroom is always a great part
of the show. Steve, have a wonderful week, and I'll see you next week.

Steve: Thank you, my friend. Right-o. Bye.

Copyright (c) 2014 by Steve Gibson and Leo Laporte. SOME RIGHTS RESERVED

This work is licensed for the good of the Internet Community under the
Creative Commons License v2.5. See the following Web page for details:
http://creativecommons.org/licenses/by-nc-sa/2.5/

Page 25 of 25Security Now! Transcript of Episode #829

