
Transcript of Episode #812

GIT Me Some PHP

Description: This week we begin by checking in on the patching progress, or lack
therefore, of the ProxyLogon Exchange Server mess. We examine a new Spectre
vulnerability in Linux, a handful of high-severity flaws affecting OpenSSL, still more
problems surfacing with SolarWinds code, an intriguing new offering from our friends at
Cloudflare, and the encouraging recognition of the need for increasing vigilance of the
security of increasingly prevalent networked APIs. I'll check in about my work on
SpinRite. Then we're going to take a look at the often breathlessly reported hack of the
PHP project's private Git server, and why I think that all the tech press got it all wrong.

High quality (64 kbps) mp3 audio file URL: http://media.GRC.com/sn/SN-812.mp3
Quarter size (16 kbps) mp3 audio file URL: http://media.GRC.com/sn/sn-812-lq.mp3

SHOW TEASE: It's time for Security Now!. Steve Gibson is here. There is a lot to talk about. Steve's
got a unique take on the PHP Git repository hack. He thinks it's actually a good thing. We'll find out

more about that. A virtual browser solution from our friends at Cloudflare that looks pretty useful. And a
little plug for our friend Rasmus Vind and his Warcraft site. It's all coming up next on Security Now!.

Leo Laporte: This is Security Now! with Steve Gibson, Episode 812, recorded
Tuesday, March 30th, 2021: GIT Me Some PHP.

It's time for Security Now!, the show where we cover the latest news about the
world of security. And, boy, is there some news this week. But I guess you could say
that about every week. Steve Gibson's here from the GRC company. When we first
started doing this 812 episodes ago we thought, how will we ever fill half an hour?
And now we fill four half hours, and there's still more to do.

Steve Gibson: Oh, my goodness, yes.

Leo: Hi, Steve. Did you have a good week?

Steve: Had a good week, yes. Got some work done, lots of work actually, on SpinRite.

Leo: Yay.

Steve: I'll mention it briefly toward the end.

Page 1 of 24Security Now! Transcript of Episode #812

Leo: People are happy to hear that.

Steve: This 812th episode I titled GIT Me Some PHP.

Leo: And I know why.

Steve: Yeah. And my reading is that all of the tech press got it wrong.

Leo: Oh. Good, that's why we count on you. Good.

Steve: Yeah. As I was reading all the huffing and puffing, I thought, you know, it's not
clear to me that this was anything more than what will end up being a big benefit. But
we'll get to that. We're going to begin by checking in on the patching progress, or lack of
course thereof at this point, of the ProxyLogon Exchange Server mess. We examine a
new Spectre vulnerability to hit Linux, believe it or not. So Spectre's not over. We have
also a handful of high-severity flaws affecting OpenSSL, probably one of the other things
you were thinking of, Leo.

Still more problems surfacing with SolarWinds code. An intriguing new offer from our
friends at Cloudflare, who just, you know, innovation seems to be their middle name.
They keep adding stuff. They're not sitting on their laurels, that's for sure. And we've got
some encouraging recognition of the need for increasing vigilance of the security of
increasingly prevalent networked APIs. Then, as I said, I want to briefly just touch on my
ongoing work with SpinRite. And then we're going to take a look at what was a
breathlessly reported hack of the PHP Project's, like, main central Git repository server,
and why I think all the tech press got it very wrong.

Leo: Interesting.

Steve: And we do, of course, have kind of a fun Picture of the Week. So I think another
great podcast for our listeners. And, yeah, no sign of security problems letting up.

Leo: We should do a traffic report. And it's all jammed up along the information
superhighway.

Steve: On the 405, yeah.

Leo: Okay, Steve. I'm ready with the Picture of the Week. This one speaks to me. It
does.

Steve: I had a feeling it would.

Leo: Yeah, it really does.

Page 2 of 24Security Now! Transcript of Episode #812

Steve: So what we have is two service windows. One, there's a big signage over the one
on the left says "More Gear." Get your more gear here. And then the other window next
to it says "Learning to Use Existing Gear."

Leo: Guess which one has the longer line?

Steve: Yeah, the guy behind the Learning to Use Existing Gear, well, he's not asleep
because he's reading a book with his head propped up on his hand. There's nobody who
has any interest in learning to use their existing gear, apparently. There's nobody at his
window. The entire line, and it goes right off the screen, is just I need some more gear.
Give me some more gear.

Leo: Don't learn to use what you've got. Get something new. It'll be more easier.
It's not signed, but it really looks like a Rich Tennant cartoon. You know, he did "The
5th Wave," it was in the "For Dummies" books, it was in magazines like - I can't
remember, it was PC - no, it was Computerworld, that's what it was. Rich Tennant.
Really looks like might be one of his.

Steve: You know, and I have to say I often harken back to when I was five because I
knew what every button on every piece of equipment that my family owned did. I mean,
I just - that was my thing. It made sense to me.

Leo: Yeah, that's how you got to be a geek.

Steve: I was going to know what it is. But I look at the remote control on the whatever it
is I've got, and there's buttons there. You've got your top menu, your side menu, your
backwards menu, the this and the that, I mean, it's just like, what is all this? Do I really -
all I want to do is go to the next episode of "Fringe."

Leo: It's a lot harder than it used to be. I agree with you.

Steve: Oh, Leo.

Leo: I don't know if that's us. I don't think it is.

Steve: I don't know.

Leo: I just think everything has proliferated to such a degree. And user interface
design seems not to have improved enough to accommodate all the new features.

Steve: Yeah. I mean, even, you know, one of the most elegant things about the iPhone
was that there was four buttons. You clicked a picture, and you got a phone. Or you
clicked when you got notes. You know, they did have a little wood grain problem there
back in the beginning. But still.

Page 3 of 24Security Now! Transcript of Episode #812

Leo: That was to make you feel at home.

Steve: There just was, like - now it's like, oh, you've got to push the screen harder and
hop on one foot and then do a little twist with your finger in order - and then you get
some secret menu that you never knew was there. And oftentimes, I mean, and I'm
certainly no guru, but I'll do something, like I'll swipe along the bottom and go back to an
app because I saw that on one of your shows once, Leo. And Lorrie goes, how did you do
that? What's that? What? What?

Leo: Yeah, there used to be a home button. They took it out. How do I get out of
here?

Steve: The other day I was helping her with something in Chrome, and she was at some
link somewhere, and I grabbed to the left of the URL and dragged it off and dropped it on
the desktop. And she's like, "What? That's a thing?" It's like, "Yes, honey. Now you have
an icon that will get you back there in time." She says, "Oh," she says, "I just need to
watch you work more often." But again, so yeah, I have like four things...

Leo: It's just as baffling for us, though. That's the thing.

Steve: Yes. I have four things that she hasn't figured out. But I look at this stuff, and I
think, what is hidden behind all these user interfaces?

Leo: I feel bad, I mean, if you and I have trouble, what's a normal person to do,
really? And I think that that's why this cartoon is so great, because I think really
normal people just - they don't try. I don't know how to get better using this, so I'm
just going to get another one, which I'll be just as lost in. Oh, gosh. I really feel bad
for people.

Steve: Okay. So our weekly ProxyLogon update. I looked for any update from Microsoft,
from RiskIQ, which is the people that they keep citing, or any other source to get some
sense for how the patching was going. I did discover that RiskIQ is now estimating that
"only" - and I put that in quotes. "Only" needs to be in quotes because the only sense in
which it's "only" is in comparison to the original several hundred thousand vulnerable and
unpatched Exchange servers that we started out with. So today we're down to "only"
29,966 instances of Exchange Server still vulnerable and thus still wide open to attack.
But that's down from the last number we reported, which was 92,072, back around
March 10th. And that nearly 30,000 number appears to be holding.

And of course unfortunately our experience suggests that, especially at this point, right,
like anyone who was going to get the news, got the news in the last three weeks since
this happened. So four weeks, actually, yeah, one, two, yeah, four weeks now exactly
since March 2nd. So we know that any further improvement will be incremental, slow,
attritional, and perhaps the result of Microsoft's slipping that useful ProxyLogon
remediation into their Windows Defender solution, since it's able to filter the primary
exploit vector from the IIS web server before that attack reaches the server's tender
underbelly.

It's not clear whether RiskIQ is actually testing for the vulnerability, which I don't
suspect, or obtaining Exchange Server's version information from some logon hello

Page 4 of 24Security Now! Transcript of Episode #812

handshake, which is probably what they're doing. So if it's the case, then RiskIQ's
number would be high because it would not be crediting all of those instances of
Exchange Server which had not been actually updated, but which did have the Windows
Defender remediation slid in and is protecting it sort of without getting any credit for
doing so. So it's probably the case that the number's coming down. But tens of
thousands. And as we know, it's like there's a battle for who can take control of these
servers and what mischief they can get themselves up to.

Leo: Well, and remediation doesn't kick them out. It just prevents new ingress. But
if somebody's already in there, they're in there; right?

Steve: Yeah. Now, what they did say, without any specifics, is that it will also go and try
to find the things that it knows of that they may have done.

Leo: Oh, good. Okay. So you could see traces of them, crumbs left behind.

Steve: Exactly. So it may have been able to remove them, which would also be a good
thing.

Leo: Yes.

Steve: And I need to turn my - pardon me. I'm trying to get our balances correct now,
having turned up my microphone, now I'm blasting myself.

Leo: I should explain we've used Skype since Episode 1, but we started using Zoom
because we're concerned, well, first of all, you never liked, from the day Microsoft
acquired them, the things they did to change how Skype worked. It used to be peer-
to-peer. Now all of a sudden it's going through Microsoft servers, blah blah blah.

Steve: Yeah.

Leo: So after looking for many alternative solutions, Alex Lindsay suggested moving
to Zoom. He's doing a lot of streaming, obviously, and he knows more probably than
anybody about which works best. And we're very happy with Zoom. But it's a whole
new set of interfaces and a whole new set of buttons that have to be tweaked.

Steve: Now it's all wonderful.

Leo: Yes.

Steve: You sound great.

Leo: Good.

Page 5 of 24Security Now! Transcript of Episode #812

Steve: And I'm just a sultry whisper in my own ears.

Leo: A whisper in your own ears. Good.

Steve: Yeah, and "sultry" is not a word that's ever been used to describe myself.

Leo: Actually, the chat room said you have a rich, velvety sound now. So, hmm.

Steve: Ah, well. Just be chatting. So Spectre is remaining with us. It's clear. Two weeks
ago we noted that Google's security blog was titled "A Spectre Proof of Concept for a
Spectre-Proof Web." And they demonstrated two weeks ago and shared their creation of
a working Spectre exploit in JavaScript that's able to obtain data from the browser's
internal memory. And yesterday researchers with Symantec's Threat Hunter Team
disclosed two ways in which Spectre's processor mitigations could be circumvented in
Linux-based OSes to launch successful speculative attacks to obtain sensitive
information, like crypto keys, from the system's kernel memory.

And what's interesting about these attacks is that on the one hand, in the very
beginning, the first time there was any notion of, like, oh, we could leak a bit every
minute, people were like, who cares? A bit a minute? But crypto keys are notoriously
dense; right? You need to get all the bits right, or you don't have anything. So that's, you
know, every single bit is crucial. But they're not very long overall. And you really want to
hide their bits well. Well, the one thing that this kind of low bandwidth leakage does is it
does get things that you thought were well hidden exposed.

So the Symantec group found two related but different ways to pull off something like
crypto key in the kernel memory leakage. Two CVEs have been assigned. And
interestingly, they're 2020: 2020-27170 and 27171. Because these should be fixed, but
they do not spell the end of the world or of Linux, they carry relatively mild CVSS scores
of 5.5. And they impact all Linux kernels prior to v5.11.8. So the trouble was first
identified last year, thus the 2020 CVE years. And the Linux teams were notified. Patches
for Ubuntu, Debian, and Red Hat were just published on March 17th, and then they were
released for deployment the Saturday before last, on March 20th.

So as I said, there are two. The first one is able to reveal the contents from the entire
memory of an affected computer; and the second one, 171, can reveal the contents from
the 4GB range of kernel memory. So remember that, because Spectre and Meltdown are
chip-level vulnerabilities, operating system patches can only be mitigations, which are
designed to make it hopefully impossible for an attacker to exploit the vulnerabilities.

My point is that the operating system has no ability to address the underlying issue which
exists in the processor beneath it, that it can't get there. It is able to load microcode at
boot time. And Intel has updated the microcode, and the Linuxes are carrying that, and
they are indeed doing as much as Intel has been able to do. But it's these mitigations for
Spectre which were also incorporated into Linux, which the Symantec group found a way
to get around, to essentially bypass the mitigations. So by using these mitigation
bypasses on any unpatched Linux before - and I wrote before 5.11.7, but it must be
before or including 5.11.7, since the update brought us to 5.11.8 - so then malicious
code can read memory that its process, that is, the process the malicious code is running
in, should have no permission to inspect.

And what's more, the attacks could also be launched remotely through malicious
websites running exploit JavaScript. So when you hear that, that's the concern; right?

Page 6 of 24Security Now! Transcript of Episode #812

Because we've often talked about how, yeah, Spectre and Meltdown, they're not good.
We don't want to have our processor leaking between processes. But still, it's more of a
theoretical than a practical issue, we have been led to believe for the last couple years.
And the point has been that, if you've got a process sharing your personal system, that
using Spectre or Meltdown, you've already got bigger problems than its ability to perform
some difficult-to-execute memory leakage. But if it's possible for JavaScript running in
your browser to do this when it's on a Linux machine, then that's something to worry
about.

So the Symantec team worked out a way to take advantage of the kernel's support for
the Extended Berkeley Packet Filters known as EBPF, to extract the contents of the kernel
memory. The Berkeley Packet Filter, BPF, has been around forever. It started out to be a
general purpose, lightweight virtual machine that was used to inspect the contents of
network packets, the idea being that, if you wanted to make a fancy packet inspector,
you need a little bit of code to do that, to perform some pattern matching. If this is that,
then check if this is that and, you know. It's a little more difficult than you could do with
a set of fixed rules.

So they implemented a simple virtual machine, the Berkeley Packet Filter, in order to
perform those sorts of simple things and to make them very fast because you don't want
something slowing down your packets. So anyone who's ever had occasion to use Linux's
TCP dump facility has likely encountered the BPF system. Since then, the Extended BPF
variant has become a universal in-kernel virtual machine which has hooks throughout the
kernel in order to do what it needs to get done.

So Symantec explained, they said: "Unprivileged BPF programs running on affected
systems could bypass the Spectre mitigations and execute speculatively out-of-bounds
loads with no restrictions." And that's the no-no which Linux was trying to prevent. They
said: "This could then be abused to reveal the contents of the memory through Spectre-
created side-channels." And specifically it's in kernel/bpf/verifier.c. They said: "The
kernel [that file] was found to perform undesirable out-of-bounds speculation on pointer
math, thus defeating fixes for Spectre and opening the door for side-channel attacks."

So the point is that Linux has been hardened against Spectre. But there was a little piece
that didn't get hardened, that Symantec realized, oops, you could still do this. So in a
real-world scenario until recently, as we know, Spectre has been a bit light on
unprivileged users' ability to leverage these weaknesses to gain access to secrets. But
this allows a way for that to happen.

Symantec explained that: "The bugs could also potentially be exploited if a malicious
actor was able to gain access to an exploitable machine through some previous step,
downloading malware onto the machine to achieve remote access. This would allow them
to further exploit these vulnerabilities to gain access, for example, to all user profiles on
the machine."

And again, patches are out. So individuals should have no problem updating themselves,
which you'll want to have done since the 20th. But, you know, here we were just talking
about the difficulty of getting the world's systems updated, the world's Windows systems
updated. Just imagine how many Linux systems have not been updated in the past two
weeks. Many haven't been updated in years, and won't be, never will be. So Symantec
tells us that these unpatched gremlins that they have found can be exploited remotely,
unfortunately.

Leo: Is it a firmware update? Or is it an operating system update?

Page 7 of 24Security Now! Transcript of Episode #812

Steve: It's an OS. It's an OS update.

Leo: Okay.

Steve: So the problem actually existed in some lack of remediation against the
remaining ways that even after the firmware was updated, that it was still possible to do
this. So it's in that C file.

Leo: Okay. All right. Well, yeah, I'll do the update. The problem with Linux, well, you
know, as you point out, that a lot of these boxes are designed just to run forever
and not be updated. I have a server in the other studio that, you know, it's a server.
I don't want to update it more than necessary, and it doesn't update automatically. A
lot of people who have desktop Linuxes, in fact I've seen people complain about this,
are obsessively updating, like every day they update. But that still doesn't guarantee
you're going to get the update because the way Linux distributions work, the
updates happen upstream, and then they have to be incorporated into the
distribution so that your distribution, whatever it is, will see it. Some distributions
are slower about that than others. It's not a uniform process. So, interesting.

Steve: Well, and how many appliances, how many turnkey boxes of one sort or another.

Leo: Yeah. Oh, gosh, yes.

Steve: I mean, all of the routers, they're all Linux-based.

Leo: Right, right. As are, I mean, anything Android-based is Linux-based. So there's
a lot of Linux out there, yeah.

Steve: Yeah.

Leo: By the way, I don't know if you noticed, but I'm glad you didn't come to me
earlier because I put in new rubber bands in my - Burke said, oh, I got some. Look
at that.

Steve: Oh, perfect.

Leo: It's bouncing right in there. Look at that.

Steve: Oh, nice.

Leo: It's only been that way for, like, four years. Yours too, probably. On with the
show.

Page 8 of 24Security Now! Transcript of Episode #812

Steve: I've not touched it in 15 years of the podcast.

Leo: Yeah, exactly. They go in about three, so that'll give you some idea. On we go.

Steve: So the OpenSSL project has fixed several high-severity flaws. Alarm bells were
also ringing over at the OpenSSL project as a result of a server crash Denial of Service
and a certificate verification bypass. So as we know, for many years, OpenSSL contained
the main repository of open source crypto magic, so the OpenSSL library was
incorporated everywhere that secure communications and certificate management was
needed. Again, don't reinvent the wheel. Security, especially security code is hard to get
right, so just drop in the library. And the library that was dropped in was OpenSSL.

Now, these days crypto's gone much more mainstream, and OpenSSL now has many
viable newer and quite a bit sleeker competitors. We've talked about Bouncy Castle,
Cryptlib, GnuTLS, Libgcrypt we were just talking about recently, Libsodium, NaCl, NSS, I
mean, there are many alternatives now. And even Amazon created a super svelte TLS
implementation for their own AWS stuff.

Leo: You have one you prefer. I think you used NaCl for SQRL; right? Or was it
Libsodium?

Steve: Libsodium, actually. But the two are almost - Libsodium and NaCl are...

Leo: NaCl is salt; right?

Steve: Right, right. So inertia being what it is, OpenSSL remains dominant. So it's under
most of the rocks that you will turn over. It is big. It's bloated. It's creaky. But it remains
the reference standard against which the performance of everything else is compared. If
you're creating a clone function, you see what OpenSSL does, and then you make sure
that yours does the same thing. So although it has by any measure through the years
been quite robust and secure, its popularity means that, when something goes wrong,
it's generally a pretty big deal.

The biggest previous mess brought to us by OpenSSL was a worrisome little flaw that
became known as Heartbleed. Ouch. And any of our listeners from seven years ago will
appreciate what a ruckus Heartbleed created back in 2014. What the two recent
discoveries lack, probably, is marketing. Somehow naming this CVE-2021-3449 just isn't
nearly as catchy as Heartbleed. And there's no wonderful dripping blood logo. But it is
still quite worrisome. And I think we've probably not heard the end of it.

Last Thursday morning cryptographic engineer Filippo Valsorda tweeted: "CVE-2021-
3449 looks like it could have been found easily if anyone figured out how to fuzz
renegotiation." But, he said: "Renegotiation is sadness." He says: "Anyway, sounds like
you can crash most OpenSSL servers on the Internet today." And that is true. Bottom
line, this lets you crash most OpenSSL servers, which is to say most Linux-based and
Unix-based servers.

Okay. So that brings us to last Thursday's OpenSSL Security Advisory from the 25th of
March. It had two pieces. The first was NULL pointer deref in signature_algorithms
processing. And it's describing this first of the two problems, 3449. They rated its
severity as high. And they said: "An OpenSSL TLS server may crash if sent a maliciously

Page 9 of 24Security Now! Transcript of Episode #812

crafted renegotiation ClientHello message from a client. If a TLS v1.2 renegotiation
ClientHello omits the signature_algorithms extension where it was present in the initial
ClientHello, but includes a signature_algorithms_cert extension, then a NULL pointer
dereference will result, leading to a crash and a denial of service attack."

They said: "A server is only vulnerable if it has TLS v1.2 and renegotiation is enabled,
which is the default configuration. OpenSSL TLS clients are not impacted by the issue,
only servers." And they said: "All OpenSSL 1.1.1 versions are affected by this issue.
Users of these versions should upgrade to OpenSSL 1.1.1k." They said: "This issue was
reported to OpenSSL on the 17th of March 2021 by Nokia. The fix was developed by
Peter Kaestle and Samuel Sapalski from Nokia."

Okay. So note that the advisory just told any malicious prankster how to down most of
the Internet's servers that use OpenSSL to provide TLS v1.2 support, which is pretty
much everything today.

Leo: Crikey.

Steve: So that's why I said I don't think that we have heard the last of it.

Leo: That's not good.

Steve: No. The good news is taking servers down hopefully is less gratifying today than
it would have been 15 years ago. Today they want to crawl in there. They want to set up
their cryptocurrency miners. They want to...

Leo: Yeah, it's just malicious malarkey versus actual valuable stuff.

Steve: Right. Still...

Leo: There's still malicious malarkey out there.

Steve: It is. And having servers down can be pesky. So if anyone notices that their
servers are crashing suddenly for no obvious reason, well, you want to update your
OpenSSL.

Leo: I'm logging in right now.

Steve: Okay. Now, that seemed a little tricky; right? The other OpenSSL problem that
was also fixed last Thursday could best be described as a weirdo edge/corner case that
you'd really need to try hard to create. But if you did, the result would be a true bypass
of certificate verification in OpenSSL. And that would obviously be very bad since, if you
cannot authenticate the identity of the party you're having a private conversation with, it
doesn't really matter if it's a private conversation. It could be a man in the middle or
anyone that you're actually talking to.

Page 10 of 24Security Now! Transcript of Episode #812

So as I was writing this, I thought, I'm tempted to share the advisory's description just
so you'd have a clear example of exactly what a "weirdo edge/corner case" exactly
sounds like. And then I thought, oh, what the hell. Here's how. The advisory describes
the problem that they also fixed. This is CA (Certificate Authority) certificate check
bypass with X509_V_FLAG_X509_STRICT. Also severity high. Again, this is an
authentication bypass for the certificate chain in OpenSSL and anything you use it for. So
not good.

So here it is. They write: "The X509_V_FLAG_X509_STRICT flag enables additional
security checks of the certificates present in a certificate chain. It is not set by default.
Starting from OpenSSL version 1.1.1h, a check to disallow certificates in the chain that
have explicitly encoded elliptic curve parameters was added as an additional strict check.
An error in the implementation of this check meant that the result of a previous check to
confirm that certificates in the chain are valid CA certificates was overwritten. This
effectively bypasses the check that non-CA certificates must not be able to issue other
certificates." Whoops.

"If a purpose" - as in one of the declared purposes for the certificate. "If a purpose has
been configured, then there is a subsequent opportunity for checks that the certificate is
a valid CA. All of the named purpose values implemented in libcrypto perform this check.
Therefore, where a purpose is set, the certificate chain will still be rejected, even when
the strict flag has been used. A purpose is set by default in libssl client and server
certificate verification routines, but it can be overridden or removed by an application.

"In order to be affected, an application must explicitly set the
X509_V_FLAG_X509_STRICT verification flag and either not set a purpose for the
certificate verification or, in the case of TLS client or server applications, override the
default purpose. OpenSSL versions 1.1.1h and newer are affected by this issue. Users of
these versions should upgrade to OpenSSL 1.1.1k," the one that just came out. And this
issue was reported to OpenSSL on the 18th of March by Benjamin Kaduk from Akamai
and was discovered by others at Akamai. The fix was developed by Tomas Mraz.

So we're not going to lose any sleep over that one. It must have been, you know, this is
not something you would discover like in the wild or in the field or anywhere. It must
have been that the guys at Akamai were perusing the OpenSSL source because, again,
this was only introduced in .1h, and we're on "k." So they must have been looking at the
source and spotted the logic flaw that way. It's never good, as I said, to have any way
around authentication in a system whose entire purpose is authentication. So it'll be good
to have this one resolved. But there are a bunch of servers out there.

It's unlikely that the situation exists that actually allows this to be triggered in the wild.
And that "h" subversion came out last September. So the window of opportunity, like
from September till now, "h" through "k," is just not that wide. It's nothing like the 11-
plus years during which Exchange Server has had these flaws, thus all Exchange servers,
even ones out of currency, are vulnerable to the Exchange Server problems. But still it's
good to get these things patched. I'm sure that when we issue our command to check for
libraries in Linux or Unix that need to be updated, OpenSSL will now pop up. And it's like,
yep, let's get that code updated.

SolarWinds keeps finding new critical problems within its own code. Last Thursday was a
busy day. SolarWinds released a new update to its Orion networking monitoring tool to
fix four security vulnerabilities, including two that could be exploited by an authenticated
attacker to achieve remote code execution. So that's better than unauthenticated, but
perhaps not enough better. We've talked about JSON deserialization flaws, about how
deserialization inherently requires interpretation, and how difficult it is to create perfectly
robust interpreters. The programmers who write these serializers, and that's something

Page 11 of 24Security Now! Transcript of Episode #812

that turns a dense data structure into some sort of a series of bytes which you can then
store, and then later you deserialize in order to restore the original data structure.

Invariably the guys who wrote the deserializers are the same ones who wrote the
serializers, or at least the spec, the serialization spec. And the assumption is too great
that the data that the deserializer will be receiving came from the serializer that the
same guys wrote. So the point is you just make the assumption that valid data is what
you're being asked to deserialize. And we have seen time and time again that that results
in vulnerabilities which create buffer overruns which end up being critical, must-fix-now
problems. And the Orion Web Console has one of those.

The second issue concerns a high-risk vulnerability that could also be leveraged by an
adversary to achieve remote code execution in the Orion Job Scheduler. The release from
SolarWinds notes: "In order to exploit this, an attacker first needs to know the
credentials of an unprivileged local account on the Orion Server." So not privileged, but
at least some credentials required. And both of these came from Trend Micro. There are
also two others, a high-severity stored cross-site scripting vulnerability in the "add
custom tab" within the customized view page and a reverse tabnabbing - we've talked
about that in the past - and open redirect vulnerability in the custom menu options page,
both of which require an Orion administrator account for successful exploitation.

So it does sound like the really bad egregious problems are - they are no longer finding
those. So it brings a number of other improvements and fixes along the way. But, you
know, as I'm thinking about SolarWinds and how bad a problem they've had, how many
problems have been fixed, it sort of begs the question, I think, that certainly many
people in government and industry must be asking themselves: Should SolarWinds now
be abandoned for a hopefully more secure alternative? The key of course is whether an
alternative would truly be more secure. It could be that with all the hot water that
SolarWinds has recently been in, their code finally got the deep cleansing security
scrutiny that it had always needed, so that now it's actually the better solution compared
with the others that perhaps haven't had the scrutiny that SolarWinds' time in the
spotlight has given it.

It's somewhat like the dilemma that an employer faces after discovering some errant
action of an employee who sincerely apologizes after being called onto the carpet for it.
Is it better to then sever the transgressor's employment over that mistake, or are they
now a better employee for having learned a valuable lesson? Again, the age-old dilemma.
In the case of SolarWinds, my feeling is that bad code somehow got in there in the first
place, and it wasn't found.

So to keep me as a customer in the long term - and I'm not a customer of SolarWinds,
but if I were - to keep me I would need to be convinced that not only were all of this
handful of flaws patched up and fixed, and that's good, but that the flawed system that
created them in the first place had also received what was apparently some much-
needed attention and patching. So tough to decide whether you leave something that's
been fixed because it was once broken, or think, well, now it's fixed, so the devil you
know.

Cloudflare is continuing their move toward offering more and more security-related
services. Last week they announced and debuted a web browser virtualization service as
part of their Cloudflare for Teams offering. They call it "Zero Trust Browsing." I just really
like the things that these guys are doing. Their description explains the motivation
behind it. They said: "Cloudflare's Browser Isolation service makes web browsing safer
and faster for your business, and it works with native browsers. Web browsers," they
said, "are more complex and sophisticated than ever before." And, boy, is that a theme
of the podcast. They said: "They're also one of your biggest attack surfaces." Again,

Page 12 of 24Security Now! Transcript of Episode #812

hello, yes. "Cloudflare Browser Isolation is a Zero Trust browsing service. It runs in the
cloud away from your networks and endpoints, insulating devices from attacks."

They said: "Secure Web Gateway policies are too restrictive, or too relaxed. No secure
web gateway can possibly block every threat on the Internet. In an attempt to limit risks,
IT teams block too many websites, and employees feel overly restricted. Then there's
malicious content, which is difficult to spot and costly to remediate. Innocuous webmail
attachments, plugins, and software extensions can disguise harmful code. Once that code
travels from a user's browser to their device, it can compromise sensitive data and infect
other network devices." And they wrap up, saying: "IT teams have limited power to
manage browser activity. Organizations often do not have full visibility into or control
over the browsers their teams use, keeping them from meeting compliance standards
and securing the users, devices, and data over their network."

So we might think of it like Remote Desktop for browsers. But the desktop is not being
remoted. Only the browser's fetch and render engine is remote. The browser's network
communications, all the stuff it fetches, all the interpretation it does, the scripting it runs,
the rendering it does, all live at Cloudflare. And Cloudflare sends the rendered visual
result, and only the visual result, to the user's browser. And apparently they're able to
pull this off so that the lag is negligible, unnoticeable.

And I was thinking about this. You know, given how insanely complex today's web pages
have become, reaching out to so many differing third-party servers to pull page sub-
assets, it does make a certain sort of sense to outsource that entire process, that entire
machine, to a capable and well-connected cloud provider like Cloudflare. Their DNS
servers can have massive caches to minimize the need for lookups. And we know that,
when you share a big cache, a big DNS cache, with a lot of people, the IPs you're looking
for are already going to be in the cache. So that's a win. And in fact they can also have
massive caching proxies for the Internet. Which means that everything can be network-
local to that browser cloud engine. So you could theoretically render pages at lightning
speed by dramatically reducing all lookups and network transit delays, blast the page
together, then intelligently send the post-rendered page result to the user, thus
completely offloading all of that work and protecting the user.

And of course the whole point of this is that anything that attacks the browser is then
also remote, since there's not any system to attack at the remote end, just this browser,
this virtual browser. And the only thing the user receives are post-digested page image
results. And it's interesting also because, by the end of today's podcast, where we'll be
talking about the hack of the PHP project's private Git server, we wind up looking at the
growing trend toward outsourcing of services for which little local value can be added. If
we cannot add any value to a service, why do it ourselves, especially if there's a
downside.

And when you think about it, why are we all pulling all of these disparate web browser
assets redundantly from all over the Internet to each of our own individual web
browsers? It really does make a sort of sense to imagine having a "browser service" that
does all of that non-value-addable redundant work for us, then sends us only a safe,
attack-free, already digested final result. It's going to be interesting to see how this
evolves. If anyone's curious to learn more, I have a link to the Cloudflare page describing
their new browser isolation feature in today's show notes. It's
Cloudflare.com/teams/browser-isolation. Really sort of an interesting idea, I think.

And I just wanted to sort of plant a flag on the issue of API security, a report that was
recently out from, not surprisingly, a company that is selling API security. So there's
that. But it had some interesting stats, and it is a thing. So the original concept of an API
didn't need any security. There was no such thing as API security. It was entirely local.
Operating systems offered their underlying services through calls to operating system

Page 13 of 24Security Now! Transcript of Episode #812

functions, like asking the OS to launch a process to allocate some memory, to open a file
and read its contents. And because there were operating system applications, and
programmers used these service calls, over time they became known as application
programming interfaces, APIs. And the operating system was then sent to be the
publisher of these interfaces.

So generically what evolved was the idea of carefully and clearly defining a set of
function calls that one entity would publish, meaning to offer, which would then be
consumed or used by one or more API users or consumers. The big change then
happened with networking, the introduction of networking. It occurred to developers of
increasingly sprawling systems and solutions that whereas web browsers had traditionally
been using HTTP queries and responses to obtain things to show on the page, there was
no reason why the parameters used by traditional local operating systems and other
application APIs, which were typically binary parameters, could not be turned into well-
formed text and sent over the wire in exactly the same fashion as HTTP web traffic. So
network APIs were born.

The problem is that insufficient attention has been given to the security of publicly
exposed APIs. And consequently, attacks against APIs are another area of growing
malicious interest. So this is forcing enterprises to start taking the security aspects of API
adoption more seriously. So the good news is the need for security is on people's radar.
And according to this report, 91% of the IT professionals they surveyed claim that API
security should be considered a priority over the next couple years, especially since more
than 70% of enterprises are estimated to be using more than 50 different sets of APIs.

The main aspects of API security which respondents considered to be a priority is access
control, which was cited by 63% of those, and I'm surprised that number's so low, I
mean, like access control is everything; regular testing, 53%; and anomaly detection and
prevention, 43%. Again, I'm not sure why all that's not 100, but okay. So maybe
someday. In total, eight out of 10 IT admins want more control over their organization's
APIs, like sophisticated API-aware firewalling. Yet tools for that are currently kind of
lacking. And then a couple other stats jumped out at me: 19% of enterprises test their
APIs for signs of abuse. Okay. Meaning that 81% don't? Four out of five organizations
enable their partners or users to access data using external APIs; right? That's not
surprising, 80%. That's often what these APIs are doing. They're information-sharing
APIs.

The current focus of network API strategies are centered around application performance
and development and integration. And, finally, 64% of survey respondents said their
current solution is to not provide robust API protection. So anyway, there's no takeaway
for us at this point. But I just wanted to put it on everyone's radar, as I said. We're
seeing an ever-increasing amount of automation. IoT is all about, I mean, like IoT is
networked APIs. When I've got an IoT thermostat, and I've got a humidity reader, and
I've got a few of those AC plugs on timers, that's all network API. And so it's going to
explode with the continuing explosion in IoT. So I have a feeling that we'll be talking
about exploits explicitly against networked APIs in the future.

So SpinRite. The work on 6.1 is moving nicely forward. And although in one sense - and
now I'm gaining like experience with this conversion; right? In one sense it's the same
SpinRite, but with direct maximum performance hardware support for IDE and SATA
drives through ATA and AHCI interfaces. Doesn't sound like a big deal. The implication,
though, is that sector addressing is expanded from 32 to 64 bits. Since it was the 32-bit
sector addressing that clamped all previous SpinRite at 4.3 billion sectors. Right? 4.3
billion. We're running across that number all the time. That's the number of 32-bit IP
addresses on the Internet.

Page 14 of 24Security Now! Transcript of Episode #812

Well, that's also the number of sectors you can address with 32 bits, 4.3 billion. And back
in '04, when I finished with SpinRite 6, that was all we were ever going to need; right?
Uh-huh. Well, that's only 2.2TB. So for SpinRite to be able to run on today's drives,
meaning all of today's drives, I am needing to support 64-bit sector addressing. And
since sector addressing is SpinRite, I am needing to update everything.

But I'm very happy with the way it's coming along. Before I began, I worried that it
wasn't going to be any different, and that SpinRite 6.0's users, upon getting 6.1, might
think, what did I wait all this time for? But in the process of moving through the code, I
am making many improvements. So SpinRite 6.1's users will definitely notice a different-
looking SpinRite. Many places where, I mean, I've had to rework things because the
underlying plumbing had to be reworked. And while I'm at it, I'm making it better. So
anyway, we're getting there. And I'm very pleased with the way it's coming.

Leo: Yay.

Steve: And Leo, I am very pleased with the way this podcast is coming.

Leo: It's rolling right along now that the microphone solutions have all been applied
and all that stuff. Hey, I was going to mention, we interviewed on Triangulation
about a year, two years ago a guy named Scott Petry. In fact, I remember Scott
because he was a former Newton engineer, and I have all this Newton stuff that he
sent along. But he had a company called Authentic8, with the number 8, that did
virtual browsing. It was the same idea as Cloudflare's doing, where you would use
their browser in the cloud and render it locally. So I wonder if Cloudflare acquired
them, or maybe they just didn't - it wasn't unique enough. They call it Silo. I
remember playing with it at the time and thinking, that's a pretty cool idea.

Steve: Well, and of course one of the offshoots of Chromium, right, is that rendering is
now open source. So, you know...

Leo: Right, right, right. You could render, yeah. I think eventually a lot of what we
do in computing, including running Windows, is going to be done that way, just run
on servers.

Steve: Microsoft is talking about it.

Leo: Yeah, they already have it, virtual desktop.

Steve: I mean, they're like, yeah.

Leo: I think it's where they're headed.

Steve: Don't you worry about those pesky bugs. Just, you know...

Page 15 of 24Security Now! Transcript of Episode #812

Leo: Well, that's a good candidate for it. Let them update it. Let them deal with the
flaws and all that stuff. It's on their servers; right?

Steve: Yeah. And if you can't run Windows for an afternoon because of a widespread
outage, that's really okay; you know?

Leo: Take the day off.

Steve: We should walk more.

Leo: Well, there's already - you probably aren't too aware of it, but there's already
several gaming services that do this. They have GPUs in the cloud. Google has one
called Stadia. Microsoft has xCloud. Gaikai was bought by PlayStation Sony, and
they do that. There's GeForce now. And all of them they rent - they have powerful
machines in the cloud. And you can use an iPhone or an Android phone to get Triple
A gaming because all the work's done remotely. So we've...

Steve: Ah, nice.

Leo: Yeah. We've seen this now, and I think this is kind of going to be the, like, big
trend in computing. You're right. When Azure goes down, not so good. And not that
that ever happens. Okay, Steve. I'm ready to learn all about PHP.

Steve: So I read all the coverage of this in the tech press. And I've looked at the source
materials. And no one appears to understand that this had to primarily be a joke hack.

Leo: Oh. Not malicious, but a joke.

Steve: See if you don't think so by the time I give you my perspective. I think it was
perpetrated by someone who arranged to compromise either the PHP Project's private Git
server, as they believe, or the account of someone. Perhaps I'm missing something. But
everyone appears to be taking this like a super serious attempt to actually sneak a
backdoor into PHP. I don't think that's...

Leo: They committed updates that had backdoors in them, basically; right? No?

Steve: Yeah. Okay. So the code is a backdoor.

Leo: Okay.

Steve: Sort of. I'll explain that in a minute. But to the degree that it's a backdoor, it's
not some sneaky, stealthy backdoor hiding in the shadows.

Page 16 of 24Security Now! Transcript of Episode #812

Leo: Yeah, in fact, PHP says, well, we noticed and fixed it within minutes; right?

Steve: Well, it's a backdoor embellished with big neon signs reading, "Hey, check out
this wide-open backdoor I just created here."

Leo: Oh, oh, okay.

Steve: So, yeah, it's a backdoor, but it's screaming to be found.

Leo: Yeah, yeah.

Steve: Okay. So here's the code that was submitted. I've got the code in the show
notes, and I know our listeners can't hear it, but I'll explain what the code does. So as
we know, every browser query to a server identifies the browser, and typically a
collection of its add-ons which may have been added to the browser, by sending a user-
agent header, U-S-E-R hyphen A-G-E-N-T colon space and then the value of the header.
The PHP code that was inserted into the repository, which you've got onscreen now in the
show notes, it extracts the value of the HTTP user-agent header from the http_globals
array that was built by PHP to describe the query. It holds that string, or it holds that
value, the value of that header in a string named "enc" which it had declared up at the
top.

It then checks to see whether the first eight characters of the user-agent header value
are zerodium, Z-E-R-O-D-I-U-M. If it finds that the user-agent header does indeed begin
with the eight characters zerodium, it then feeds the rest of the string, skipping those
first eight characters, as one would, into PHP's insanely dangerous eval function, which
interpretively executes whatever PHP code is passed to it, which is whatever is contained
in the balance of the string. And driving the joke home, as if the presence of the trigger
string test for zerodium were not glaring enough, our hacker then tosses in a quoted
string reading in all caps: REMOVETHIS colon space, and then it says "sold to zerodium,
mid-2017." It's like, what?

Leo: It's an old exploit. Is that what he's trying to say?

Steve: Well, yeah, exactly. This person who put it in two days ago was trying to say
somehow you've missed this for the last four years. Okay. The official PHP documentation
for the eval function reads: "Caution." Caution, bold larger type. Then it says: "The eval
language construct is [in italics] very dangerous..."

Leo: Flawed.

Steve: Exactly.

Leo: That's why we put it in.

Page 17 of 24Security Now! Transcript of Episode #812

Steve: Oh, exactly, "...because it allows execution of arbitrary PHP code." Then again,
italics, all italics this sentence, "Its use thus is discouraged." But of course, but it's there;
right? And they say: "If you have carefully verified that there is no other option than to
use this construct, pay special attention," and now we're going to switch into italics
again, "not to pass any user-provided data," now back to non-italics, "into it without
properly validating it beforehand."

Okay. So of course feeding user-provided data into the eval function is precisely what
this little glaringly obvious snippet of code does. But it's that it's so glaringly obvious,
deliberately calling attention to itself with the all caps "REMOVETHIS" as in, what?
Remove this before use? Or don't leave any of this in here since it's a hack that was sold
to Zerodium many years ago? It makes no sense.

Leo: It doesn't execute. And by the way, evaluating it doesn't make sense, either. It
doesn't do anything; right?

Steve: Well, okay. So first of all, Zerodium's CEO was not impressed by this. He tweeted
that the culprit was a "troll." That's his word.

Leo: Yeah, yeah. That's accurate, yeah.

Steve: Commenting that - this is the guy, the CEO: "Likely, the researcher(s) who found
this bug/exploit tried to sell it to many entities, but none wanted to buy this crap, so they
burned it for fun." Okay, now, wait. What? Maybe he also misunderstood this. It was a
commit to the PHP Git server two days ago. It's not like it's been hiding in PHP since
1950 and no one noticed it until now. I mean, that entire block was added, not, like, a
few characters changed to make this happen. And also interestingly, I thought this was
interesting, the name of the actual header being checked is HTTP_USER_AGENTT. It's got
two T's on the end.

I checked in with Rasmus, Rasmus Vind, who is, as we know, my go-to guy for all things
PHP, to verify that PHP would, in fact, populate the http_globals array with any and all
client headers it found in the query. He wrote some code to demonstrate that it does. So
we'd have to presume that using the deliberately misspelled twice, it's not just misspelled
once because he's using it, and then he's also taking the size of it elsewhere, that using
HTTP_USER_AGENTT with the extra "T" was the hacker's way of hiding the use of what is
actually a custom header in a lookalike header that might go unnoticed maybe. I mean, I
saw it right away. But on the other hand, I program in assembler so I look for details.
But maybe you would miss it in a cursory scan.

It might also be that commandeering the actual HTTP_USER_AGENT header for this
purpose, that is, Zerodium and then some code, could have unforeseen side effects like
causing the query to be blocked elsewhere. And finally, in an exercise, I don't know, dry
wit or maybe a twisted sense of humor, the hacker gave their commit the title "Typo
Fixed" and in the detail just says "Fixes minor typo." But it's a block of code. I mean,
anyone who looks at it sees a block of code that's been added.

So on the serious side, what we definitely had here was a true, completely unauthorized
incursion into the PHP private Git server. Had it gone unnoticed, if a tiny tweak had been
dropped in, for example, the damage throughout the industry could have been
substantial. But it was designed to be seen. Like, first of all, "Typo Fixed," and it's a block
of new code? So again, you can't possibly. And then this Zerodium with the all caps
REMOVETHIS. Your eye goes immediately to that.

Page 18 of 24Security Now! Transcript of Episode #812

So yesterday Nikita Popov, a well-known software developer at JetBrains and an active
open source contributor - he works with PHP, the LLVM project and Rust efforts - he
posted under the subject "Changes to Git commit workflow." And he wrote: "Hi,
everyone. Yesterday 2021-03-28" - so two days ago for us. He said: "Two malicious
commits" - only because it was like that block was created in two pieces - "were pushed
to the php-src repo from the names of Rasmus Lerdorf, the creator of PHP..."

Leo: The creator of PHP.

Steve: "...and myself."

Leo: Oh, wow.

Steve: He said: "We don't yet know how exactly this happened."

Leo: It sounds like the credentials were compromised.

Steve: I think it's a credential hack. But he says, for whatever reason, he says no. He
says: "But everything points towards a compromise of the git.php.net server," he says,
"(rather than a compromise of an individual git account)."

Leo: Oh. That's much worse, actually.

Steve: Yeah, exactly. He said: "While investigation is still underway" - and Leo, that is
the point, what you just said. "While investigation is still underway, we have decided that
maintaining our own git infrastructure is an unnecessary security risk."

Leo: Yes. No one else does, yeah, yeah.

Steve: "And that we will discontinue the git.php.net server. Instead, the repositories on
GitHub, which were previously only mirrors, will become canonical. This means..."

Leo: Good. That's sensible.

Steve: Yes, "...that changes should now be pushed directly to GitHub rather than to
git.php.net. While previously write access to repositories was handled through our
homegrown karma system, you will now need to be part of the PHP organization on
GitHub. If you are not part of the organization yet, or don't have access to a repository
you should have access to, contact me at" - and he has his email address - "with your
php.net and GitHub account names, as well as the permissions you're currently missing.
Membership in the organization requires two-factor authentication to be enabled. This
change also means that it is now possible to merge pull requests directly from the GitHub
web interface. We're reviewing the repositories for any corruption beyond the two
referenced commits. Please contact security@php.net if you notice anything. Regards,
Nikita."

Page 19 of 24Security Now! Transcript of Episode #812

So this is all good. The PHP guys are taking the opportunity of this hack to move their
work from their private server, where they have been responsible for much more than
just the code it contains. They're moving to GitHub, where they only need to be
responsible for the code it contains, and the GitHub folks get to worry about the security
of all the rest of the infrastructure, the bandwidth, the capacity, the storage,
authentication, attacks, and so on.

Leo: Focus on your strengths, in other words.

Steve: Yes. And it's worth noting that, as trends go, this is definitely a trend. I'll remind
everyone that about three and a half years ago, when I was participating in that DigiCert
customer advisory board meeting in Utah, and I casually referred to my server rack at
Level 3, everyone looked at me like I had just dropped an F-bomb on the Disney
Channel. And I said, "What?" And one of the guys said, "Steve, no one does their own
hardware anymore." And at that point I thought it best not to mention that I also code in
assembly language.

Leo: It's actually an interesting thing. I've been thinking about this because a lot of
people, well, a good example is in the password management sphere. There are a
certain number of more sophisticated users, probably listeners to this show, who
say, oh, no, no, no, I don't want to trust my password vault to LastPass or
1Password or any centralized thing. I'm going to have my own password vault. And
while on the one hand I understand, I mean, you're certainly eliminating a target
because everybody knows there's a bunch of vaults at LastPass's storage, wherever
that is. But on the other hand, you now have to attain the level of professional
security that LastPass or 1Password presumably has protecting the vaults. You're
assuming the security risk. Just sticking it on Dropbox, I don't know if that's more
secure.

So it's an interesting question and tradeoff. And I often tell people, I trust LastPass,
or Bitwarden because you can do that yourself, you can self-host Bitwarden. But I
trust them to do a better job than I'm going to do. It's their full-time job. Same
thing with GitHub. It's their full-time job; right?

Steve: Yes. And, you know, I think certainly in the case of these guys it makes sense.
But one thing we have to remember or recognize is that inherently this approach, this
consolidation, which is sort of what we're talking about, puts a lot of eggs into many
fewer baskets. This makes the care and handling of those baskets far more important
than ever.

Leo: Critical, yeah.

Steve: We do see reports, and you were talking about it, and I hear about it on the other
podcasts, of spotty outages of major services that transiently bring down all users of the
affected service at once. And although I haven't mentioned it before, one of the more
notable recent victims of a ransomware attack was one of the largest managed service
providers who's been hit with a $20 million ransom demand.

So this sort of consolidation is more cost effective overall. But I think we need to
appreciate that it also creates an inherently more fragile solution. This consolidation and

Page 20 of 24Security Now! Transcript of Episode #812

refactoring of function and responsibility is clearly going to happen. And a school district
can give its students a day or two or a week off if their informatics systems go down. But
mission-critical environments like a hospital might not be able to withstand transient
outages. So it needs to be, just as you said, Leo, it's a tradeoff.

Leo: Yeah, you need to understand the tradeoff. It's just not inherently better.

Steve: Right, right.

Leo: And maybe it is. But the burden now is on you. If you're going to host your
own Git repository, then the burden is on you to keep it secure. And apparently they
weren't able to.

Steve: Well, and I think on balance the industry owes this jokester its thanks.

Leo: Good point.

Steve: He or she made PHP more secure and more securable as a consequence.

Leo: And didn't actually do anything malicious.

Steve: Nope.

Leo: Just called attention to the fact that he could have.

Steve: Yes, exactly.

Leo: Yeah. So he in a way did us all a favor, yeah. Because PHP is just everywhere.

Steve: Yeah, he dropped a big blurb, something you could not fail to notice, that didn't
pass any smell test. And everyone's like, whoa. So what the GitHub guys were upset
about, I'm sorry, what the PHP guys were upset about was that this happened to them.
What the tech press thought was important was, oh, my god, a backdoor was inserted.

Leo: Right.

Steve: And it's like, no. This was a good thing, folks, not a bad thing.

Leo: Yeah. I understand the reaction, though. Randal Schwartz got arrested because
he was working at, I won't name the name of the company, working at a company
and found a flaw. And he didn't exploit it. He told them about it. And they fired him
and got him arrested because they said, "You're hacking our system." And I think

Page 21 of 24Security Now! Transcript of Episode #812

this is not that unusual, where there's a gray line. You're not supposed to be nosing
around in there. But if you find a security flaw, I think you're duty-bound to tell the
company you found it. This is a good way to do it anonymously without getting in
trouble. Who knows. For all we know it could have been Rasmus's son or somebody
like that that did it. It's a good thing. There's somebody saying he's not a white hat,
not a gray hat, not a black hat. He's a clown hat hacker. Okay.

Steve: Okay. And speaking of Rasmus, who that Rasmus is the father of PHP...

Leo: Lerdorf, yeah.

Steve: My Rasmus is a PHP guru. Leo, you've got a browser in front of you.

Leo: Yes.

Steve: You need to go to www.hiveworkshop.com.

Leo: Ooh.

Steve: That is Rasmus's work.

Leo: This is the guy who does XenForo.

Steve: Well, no. So this is the guy who is a listener of ours.

Leo: Oh, he's our listener.

Steve: Who when I was saying that I was scratching my head about how am I going to
integrate SQRL with XenForo, which is written in PHP...

Leo: Right, right.

Steve: He said, "I use XenForo. I'd be happy to help."

Leo: Nice. So this is a XenForo forum, but...

Steve: Believe it or not, that is the most crazy, heavily reskinned, I mean, it's
unrecognizable.

Leo: For fans of World of Warcraft. That's cool.

Page 22 of 24Security Now! Transcript of Episode #812

Steve: Yes. It bills itself, HiveWorkshop.com, the No. 1 Largest Warcraft 3, whatever this
is, Reforged Modding Community. And I have no idea what that means. But it is a tour de
force in PHP-based CSS and HTML reskinning. So, I mean, I can barely see XenForo as I
know it under there.

Leo: Yeah, yeah.

Steve: But, wow.

Leo: That's good. That's funny.

Steve: Yeah, great graphics and performance. He moved to the latest XenForo and is
apparently cleaning up some little debris. But anyway, I just wanted to give him a shout-
out because he's been a big help to us and to the podcast.

Leo: Thank you, Rasmus. HiveWorkshop.com. You get a little plug. How about that?
And you get a little respite for a week. That concludes this thrilling, gripping edition
of Security Now!: GIT Me Some PHP. Our own personal joker titled this one. You'll
find Steve at his website, GRC.com. That's where of course SpinRite lives, the
world's best hard drive recovery and maintenance utility. 6.1's coming. Steve's
getting there, making some real good progress.

Steve: I'm on it.

Leo: If you buy 6.0 now, you'll get a free upgrade to 6.1. More importantly, you'll
get to participate in the development of it. Everybody, if you have a - and I keep
saying if you have a hard drive you should have SpinRite. But because now it works
so well and does so much on SSDs, if you have any drive, you need SpinRite. I'm
getting a new system. I'm going to be getting my SpinRite out to work on the M.2
SSD in it, and it has a spinning drive in it, too.

Steve: It will drive you happy.

Leo: So SpinRite before you - that should be your motto. SpinRite before you go.
You'll also find 16Kb versions of this show for the bandwidth-impaired, handwritten
human-written transcriptions of every word. Thank you, Elaine. You'll also find 64Kb
audio there. There's a feedback form on the website at GRC.com/feedback. There's
also a lot of free stuff, including ShieldsUP!, which is really the premier router testing
platform. Any time you install a new router, you should go to ShieldsUP!. He's also
got a lot of other interesting stuff. It's a rabbit hole you can go down and spend
some time. GRC.com. He also is on the Twitter at @SGgrc. You can leave him a DM
there. His DMs are open. Slide into Steve's DMs.

We have copies of the show at our website, of course, as with all our shows, 64Kb
audio plus video. For some reason we shoot video of it. That's all at TWiT.tv/sn. If
you're watching us do it live, we do it live right after MacBreak Weekly of a Tuesday.
Usually it's around 1:30 to 2:00 p.m. Pacific. That'd be 4:30 or 5:00 p.m. Eastern,

Page 23 of 24Security Now! Transcript of Episode #812

20:30 to 21:00 UTC. Just, you know what, we're on all day. Go to TWiT.tv/live.
There's a live video stream and live audio stream. You can check that out.

While you're doing that, chat with our chatroom. They're watching live, too:
irc.twit.tv. You can also comment asynchronously, if you listen to the podcast, at
Steve's forums at GRC.com. We also have forums at twit.community, and we have a
Mastodon instance. That's the Twitter clone that's federated. It's really cool. We now
have enough, I think, critical mass, more than a thousand users, so it's fun. It's
perking up. That's twit.social. You're more than welcome to join.

I think, though, if I might, I'd like to encourage you, there's lots of ways to watch
the show. There's even a YouTube channel. Get a podcast program and subscribe.
That way you'll get it automatically. You won't have to worry about missing an
episode. And if you would, if they allow reviews in that podcast player, please give
us a nice review. Five stars would be more than welcome. Steve, thank you very
much. Have a great evening. Is there an Italian dinner in your forecast for this
week?

Steve: Oh, yeah. Steak tonight, Italian on Sunday.

Leo: Steve's fully vaccinated, and he's living it up.

Steve: Ah, yeah.

Leo: I'm right after you, Steve. Have a great week. We'll see you next time on
Security Now!.

Steve: Bye.

Copyright (c) 2014 by Steve Gibson and Leo Laporte. SOME RIGHTS RESERVED

This work is licensed for the good of the Internet Community under the
Creative Commons License v2.5. See the following Web page for details:
http://creativecommons.org/licenses/by-nc-sa/2.5/

Page 24 of 24Security Now! Transcript of Episode #812

