
Transcript of Episode #808

CNAME Collusion

Description: This week we discuss a welcome change coming soon to the Chrome
browser, and a welcome evolution in last week's just released Firefox 86. We're going to
look at questions surrounding the source of the original intrusion into SolarWinds servers,
and at a new severity-10 vulnerability affecting Rockwell Automation PLC controllers.
We'll touch on VMware's current trouble with exploitation of their vCenter management
system, and I want to share a recent code debugging experience I think our listeners will
enjoy and find interesting. Then we're going to conclude with some information about
something that's been going on quietly out of sight and under the covers which must be
made as widely public among web technologists as possible.

High quality (64 kbps) mp3 audio file URL: http://media.GRC.com/sn/SN-808.mp3
Quarter size (16 kbps) mp3 audio file URL: http://media.GRC.com/sn/sn-808-lq.mp3

SHOW TEASE: It's time for Security Now!. Steve Gibson is here. Lots to talk about, including breaking
news. Seven, count them, seven zero-days in Microsoft Exchange Server. And we'll talk about a sneaky

new thing that some websites are using to track you, even if you have tracking protection turned on.
We'll tell you how to avoid it, CNAME collusion, coming up next.

Leo Laporte: This is Security Now! with Steve Gibson, Episode 808, recorded
Tuesday, March 2nd, 2021: CNAME Collusion.

It's time for Security Now!, the show where we cover your security and privacy and
well-being online with this cat right here, Mr. James - James? Started calling you
James Tiberius Gibson. But no.

Steve Gibson: I knew where you were going with that, yeah.

Leo: Steve Gibson of the GRC Corp. He has danced...

Steve: It was the Vulcan wave.

Leo: That's what did it.

Steve: The Vulcan hand sign. That's what got you tripped up.

Page 1 of 28Security Now! Transcript of Episode #808

Leo: That's what did it, yup. I don't know what Mr. Spock's middle name is. I don't
even know what his first name is. But I do know James Tiberius Kirk.

Steve: Actually we're having fun. We are rewatching "Fringe," which Lorrie never saw.

Leo: Oh, yeah, yeah.

Steve: And of course he is Bell. And at the end of the first season he comes out of the
shadows. And of course I recognized his voice.

Leo: Shatner. You knew immediately, yeah.

Steve: Yeah. And then she's like [gasps]. So anyway, we're having fun with that.

Leo: Nice.

Steve: This is going to be one of those episodes, Leo. This is important. No fooling
around this time. There's something which has come to light which is a form of escalation
of the browser tracking fight which is very disturbing because of what the tracking
companies are asking websites to do, thus the "collusion" part of this. There is collusion
involved. And the consequences of what's been done in order to avoid those who wish
not to be tracked, to circumvent anti-tracking, is deeply disturbing.

So there was more news, but I wanted to be able to spend enough time on this because,
I mean, we do have news. But as I looked into this, I just thought, okay. And I say this
in the show notes later because I just wrote this about 10 minutes ago. We can't fault
people when cookies began being abused by third parties, even though that was never
their design, because people didn't know. I mean, random users, they didn't see the
tracking going on. The technologists knew, and we did nothing. And we're here again.
We're at something that is going on that no one is seeing, that by the end of this podcast
every one of the podcast listeners is going to understand. And something - we just can't
do nothing again.

Anyway, the topic, the name of the podcast is CNAME Collusion. I was going to go with
the CNAME Conspiracy, but that word's been a little overused lately. And so I thought
collusion sounds better, and it's actually more accurate. But first we're going to discuss a
welcome change coming soon to a Chrome browser, probably near you. And a welcome
evolution in last week's just-released Firefox 86, which actually 86's something. We're
going to look at questions surrounding the source of the original intrusion into
SolarWinds servers, which there's some controversy about. The old CFO and the new
CFO have differing opinions about how this thing crawled in in the first place.

Also we're going to look at a new severity-10 vulnerability affecting Rockwell Automation
PLC controllers. CISA is warning the world about this. We'll touch on VMware's current
dilemma with the exploitation of their vCenter management system as a consequence of
a patch they just released which was instantly reversed and for which there are, last time
I checked, six public exploits which immediately started getting used. I also want to
share, because I think our listeners will find it really interesting, I certainly did, a recent
code debugging experience I had with that system that I mentioned last week, that it

Page 2 of 28Security Now! Transcript of Episode #808

was the only system that I had that was still causing me trouble. And I now know why.
And, oh, is it weird.

And then, as I said, we're going to conclude with some information about something
that's been going on quietly out of site and under the covers, which must be made as
widely public among web technologists as possible. And so we're going to do our part on
this podcast.

Leo: As always. That sounds interesting. I will be staying tuned. Not like I can go
anywhere, but I'll be listening with interest.

Steve: Just don't fall off your ball, Leo.

Leo: I might. Depends on how shocking the CNAME Collusion is. All right, Steve.

Steve: So our Picture of the Week is just sort of a fun one. I titled it "Not exactly
confidence inspiring." And this is showing an ATM, a contemporary-looking ATM. And on
the screen it shows - apparently the processor has crashed and rebooted, and it shows
Microsoft Windows NT Workstation. And I went down, I squinted at the screen, and I
thought, oh, well, at least it's Workstation 4.0. So that's good. It's not 3.51 or whatever
it used to be.

But anyway, yes, if your ATM is running on Windows NT, I mean, that doesn't mean that
it's insecure because of course new viruses won't infect Windows NT. But it does sort of
suggest that it isn't receiving any regular maintenance and love and care, that maybe the
300 baud modem which it's using to connect to the rest of the world is the reason why
your transactions are running a little slowly.

Leo: Used to be you'd hear that. You'd hear the [mimicking modem noise].

Steve: Oh, yeah.

Leo: It's also a little concerning that we're seeing the boot screen on the ATM. I
don't think that's a good sign, either.

Steve: That's true. Yeah. That probably means that the 10MB hard drive...

Leo: It's full.

Steve: ...is retrying or was unable to get off the ground or lord knows. Maybe the floppy
that it's running inside is having read errors. So I am delighted to announced that the
forthcoming Chrome v90, which is slated for release around mid-April, will finally assume
that any non-specific, or as Google terms it, "schemeless" URL which is entered into its
omnibox, which is what they call the URL field, will be assumed HTTPS before falling back
to HTTP. As our listeners know, I've mentioned often that it seems well past time for our
browsers to assume HTTPS rather than HTTP. They don't do that yet. But it appears
that's finally going to happen. This will likely influence certainly all other Chromium-

Page 3 of 28Security Now! Transcript of Episode #808

based browsers, and we can expect that probably Firefox and Safari will follow suit. I
think it's 80 - I saw the figure recently, actually when I was researching this. Eighty-
some, oh, maybe it's in here.

So last Wednesday Google's Emily Stark tweeted, if you're running Chrome Canary, dev
or beta, so that's not the one we get yet, or that the rest of us have yet, and you want
some more HTTPS in your life, which, okay, you can't avoid having it in your life.
Anyway, she said: "Go to chrome://flags and search for 'omnibox-default-typed-'" -
actually all you have to do is "omnibox-," and you could type a "d" for default. I did it.
There aren't any other collisions in the search. So anyway, it's omnibox-default-typed-
navigations-to-https, which allows you to enable Chrome first trying HTTPS rather than
HTTP by default.

Anyway, and then the next day she followed up, tweeting: "Currently, the plan is to run
as an experiment for a small percentage of users in Chrome 89" - okay, so that will be
the next one we get, which probably is sometime soon, later this month, and then will
launch fully. Assuming presumably that nothing blows up from their small percentage of
user tests in 89, it'll be on in Chrome 90. So, yeah, the current public release is 88. And I
checked. 88 doesn't yet have anything like that option. 89 will. So a test percentage of
89 users will get that. The rest of us, if we're curious, and I will when 89 comes out, will
turn it on because it's clear that when you just type GRC.com, you should go to
https://GRC.com.

I have long had code that redirects any HTTP person coming in immediately to HTTPS.
Well-behaved sites do that. But again, HTTP should die eventually. Certainly the browsers
are doing everything they can to kill it off. So, yeah, this is just, you know, makes sense
that this would eventually happen. Chrome is leading the way. Edge and Brave and
everybody else, Vivaldi, all the other Chromium-based browsers will probably do the
same thing. And I imagine then Firefox and Safari will follow.

Leo: So Brave does HTTPS Everywhere. I think it has it built in. Is that the same
thing?

Steve: Okay, yeah, kind of. So that says it's typically an add-on on current browsers.

Leo: Yeah, it's a Chrome extension, I think, yeah.

Steve: Yes. Which does transmute the non-specific URL into HTTPS. So yes. Basically
that HTTPS Everywhere, our listeners know, has been around for a couple years now. It's
finally getting built in. But so if you don't specify, Chrome will go HTTPS first. If that
doesn't answer, there's nobody home there, then they'll go, huh, and try HTTP. And of
course then all kinds of other alarms and bells are going to go off because Chrome
doesn't want to talk to anybody over HTTP. It's like you get all kinds of scary, like oh,
wait a minute. And like, yeah, yeah, yeah. But I think it was 83% of all websites are now
HTTPS, which is really great.

Leo: That's great. And that's - you can thank Chrome for that because Google really
pushed this; right?

Steve: Yes.

Page 4 of 28Security Now! Transcript of Episode #808

Leo: They said you'll rank higher in the search.

Steve: Chrome and Let's Encrypt. Let's Encrypt was arguably...

Leo: They made it easy, yeah.

Steve: Well, they made it free. That was the big deal.

Leo: Right.

Steve: All the old grumbly Linux farts [cross grumbling]. That's not the way the Internet
was meant to be. It's supposed to be free.

Leo: Well, it is pricey, I have to - or was pricey.

Steve: As in beer or something. What is it, beer free? I don't know if beer is free.

Leo: No, it's not. It's liberated.

Steve: Liberated, yes. Anyway.

Leo: So, yeah, because Brave does have that. So Brave has done that for a while,
for as long as I can remember, this HTTPS.

Steve: They may have been, you know, maybe Chrome was looking at that going, huh,
that works better than we thought. So, yeah. So, okay. So that's the first bit of good
news on the browser front. The second is that apparently my wish list is getting some
long overdue attention this week. Mozilla just announced that with their recently released
Firefox 86, the long-running abuse of third-party cookies would finally be 86'd.

Of course as I've long lamented, and we'll be talking about this toward the end, the use
of third-party offsite cookies for tracking was never part of the plan. Netscape invented
first-party cookies in order to implement a simple session maintenance mechanism which
for the first time back then, and still today, enables the concept of a user logging into a
website and then being known as they moved about. Essentially it amounted to them
being tracked as they moved about that one site. But being a first-party cookie, it only
worked for that one site.

What was never intended was that third-party advertisers, or dark and unseen analytics
providers, or Google Analytics, would insinuate themselves pervasively throughout the
web and employ their own cookies for tagging and tracking the activities of individual
users. But as we know, what can be done will be done. And tracking is what resulted.

So here's what they've done. With the release of Firefox 86, that just ended. I mean, like
really. At the top of their posting titled "Total Cookie Protection," Mozilla wrote: "Today
we are pleased to announce Total Cookie Protection, a major privacy advance in Firefox

Page 5 of 28Security Now! Transcript of Episode #808

built into ETP Strict Mode. Total Cookie Protection confines cookies to the site where they
were created, which prevents tracking companies from using these cookies to track your
browsing from site to site."

Okay. So in other words, third-party cookies are not blocked, but they are stovepiped. So
assuming, for example, that third-party cookies were enabled at all in your browser,
which is the case typically, any third-party entity may still give the user's browser its
cookie, like an advertiser or like Google Analytics or like anyone providing content to
your page when you visit a specific site. They're welcome to give your browser its cookie.
But now, I mean, like Firefox right now, I have 86, and you get it. If you go to About
Firefox you'll probably see that you have 85, and then it'll offer - although I did get an
update yesterday without asking.

But now Firefox will associate the third-party cookie it received with the website where
the user was when that cookie was received. The two will be paired. So if the user
returns to the same site, that third-party cookie will be returned to the third-party site.
So it's not breaking third-party cookies. But if the user visits a different site with content,
an advertisement or tracking code from that same third-party site, because the user is
visiting a different website, there will be no third-party cookie associated with the visited
site. So cross-site tracking is defeated.

Now, if we wanted to use some modern high-falutin' language to describe this, we would
say that Mozilla has segmented their browser cookie name space, creating individual
cookie name spaces for each website. So I think this is it. I mean, this is a wonderful
compromise between allowing and refusing all third-party cookies just as a binary choice.
With this solution, third-party cookies are still allowed. Nobody can say, oh, you turned
off third-party cookies. You're bad. No. They're on. But you don't get that same third-
party cookie when you go somewhere else that has that same third-party site. You're at
a different location. So it's treated as a new third-party cookie, not cross-associated
among websites.

So this is just great. We know that the pressure to track is significant. Even though,
when it really does work, it's frequently reported as being a bit unnerving, like when
some recent activity that you have had somewhere, like you're in Amazon searching for
something, that turns up in an ad somewhere else a few minutes later. That freaks
people out. It's like, wait a minute. I mean, notice that when people actually experience
being tracked, they're not happy. They're like, wait. But most of the time you don't
experience it. And I'm not convinced it even actually provides any substantial, like,
worthwhile revenue. But it sure is a big business. So anyway, big props to Mozilla for
adding this welcome and long-overdue feature to Firefox.

Okay. SolarWinds. It's going to be a while before we really get through with this topic.

Leo: The gift that keeps on giving, yeah.

Steve: Yeah. As we know, post-intrusion forensics is always difficult. Like the famous
Hacking 101 is, well, once you break in, you delete the log files of your break-in, and
thus you eliminate some of the tracks. So that's sort of a classic example. But, yeah, you
can kind of do that. And we've talked about how much the designers of the intrusion,
how much effort they went to to deliberately thwart post-intrusion forensics from figuring
out where they came from. Like to decouple the intrusion from SolarWinds into other
systems, to prevent it being tracked back to SolarWinds.

So the previous SolarWinds CEO, Kevin Thompson, says that it may - this was in front of
the Senate or the House, I guess it was, a representative - oh, yeah, the U.S. House of

Page 6 of 28Security Now! Transcript of Episode #808

Representatives Oversight & Homeland Security Committee. He said: "It may have all
started when an intern" - right, blame it on an intern, they're gone - "when an intern set
an important password to solarwinds123." Fortunately, not monkey. But still it was
SolarWinds password set to solarwinds123. And then, adding insult to injury, the intern
posted it on GitHub.

Leo: Love it.

Steve: Oh. Kevin Thompson, he told a, as I said, a joint U.S. House of Representatives
Oversight & Homeland Security Committee hearing that the password was "a mistake
that an intern made. They violated our password policies, and they posted that password
on their own private GitHub account. As soon as it was identified and brought to the
attention of my security team, they took that down."

Okay, now, as soon as, you know, when you learn to speak that way, you get the C of
the CEO in front of your designation. Kevin's responsible-as-possible-sounding testimony
was contradicted by SolarWinds' current CEO, Sudhakar Ramakrishna, who confessed
that the password solarwinds123 was in use by 2017. The researcher Vinoth Kumar, who
discovered the leaked password to one of SolarWinds' file servers had earlier stated that
SolarWinds did not change the password until November of 2019, after he had
discovered it on the Internet and reported it. So about two years that password
solarwinds123 was in use. Now, the insecure password - yeah.

Leo: You have to wonder at all the employees who use it who didn't think twice.

Steve: Yes, exactly. Exactly. In two years that's how they logged onto that server. Oh,
thank goodness this is easy to remember.

Leo: So easy to remember.

Steve: Don't have to look it up. It's not a bunch of gibberish. I can just say it over the
phone. How nice. The insecure password is one of three possible avenues of attack,
which SolarWinds has been investigating as it tries to determine how it was first
compromised by the hackers. The two other theories are brute-force guessing of
company passwords, so-called "credential stuffing," as we call it now, as well as the
possibility the hackers could have entered via compromised third-party software. That's
right. Let's blame it on somebody else, if not this intern that we had a couple years ago
whose password was allowed to sit there for several years.

Then some other third-party software, and of course they're the third-party software that
really did the damage. In other words, they don't know for sure. And since post-intrusion
forensics is difficult, we might never be certain. But publicly posting a private password
on GitHub is certainly not the way to keep it a secret.

Okay. Speaking of things that you really wish you could keep secret, but you can't,
Rockwell Automation has a CVE-2021-22681. It is a 10 out of 10 Critical, assigned by
CISA. The security of nearly all of Rockwell Automation's PLCs, which are Programmable
Logic Controllers, are affected by the use of a single globally shared static encryption
key. Oh, yes. Every one of the, now, I wrote "hundreds of thousands." It's probably
millions. I mean, these things are everywhere. I'll explain what PLCs are. But they're all

Page 7 of 28Security Now! Transcript of Episode #808

"protected," in air quotes, by the same single key. So of course there just might as well
not be one.

The Programmable Logic Controller fills an important gap within any process control
system, or an important need. For example, you might be on an oil rig, where the
pressure of a feeder line, and I don't even know what that is, but it sounds good, a
feeder line must be maintained within a range. But the pressure might need to be taken
at several different places and averaged. And there might be multiple upstream sources
of pressure controlled by valves with actuators. So in a sense it's a small closed system
having a handful of inputs and outputs. And once its function is defined, it can and should
just be left alone to work. You just want that feeder line pressure maintained. And if
you've got to open some valves using actuators to maintain the pressure, then that's
good. And you want to average the pressure in a few locations. So not a big complex job,
but it's a job that needs to get done.

So how do you build the control system for that? Once upon a time, before computers, a
custom circuit would have been created, and some tech would have built it from scratch.
Today, you go over to Rockwell Automation's website and pick the PLC, the
Programmable Logic Controller, that's just big enough to - because there's a whole bunch
of them of different sizes. You want the one that's just big enough to handle the number
and types of inputs and outputs that you need. Then an engineer who's been trained up
uses Rockwell software, which is called Studio 5000 Logix Designer, to program the little
computer that resides inside that industrial oil rig-tough little box. And you hook it up.
And that little world will now take care of itself.

So a PLC does a limited set of very specific things. Once upon a time, as I said, it might
have been done with discrete circuitry, like a bunch of clacking relays, all wired together
to implement the sequencing logic required to route vials of newly synthesized vaccine
around their carousel, counting them as they pass, and then to flip routing gates open
and closed at the exact time needed to fill the waiting containers. Another typical job for
a PLC. But today all of that is handled, not with a bunch of clacking relays, but by an
unseen Rockwell Automation PLC. It's programmed once, and it effectively becomes part
of the overall machine.

In any industrial setting, where things are moving, spinning, whirring, valves are opening
and closing and stuff's happening, there are tasks that don't require a general purpose
computer. And god knows you sure don't want Windows anywhere near the control loop
of systems like that. It'll decide it's time to update, and your vaccine vials will go flying
all over the place. So yes, Windows hosts Rockwell's Studio 5000 Logix Designer app,
which is used in a cool way to interactively design the logic that will be programmed into
this. But once that PLC device is programmed, it's blessedly off on its own. Leave it
alone, it'll just get the job done.

So everything would be great with these workaday PLCs. But apparently some bozo
somewhere decided that needing to go down to the shop floor to tweak the controller of
the machine that's squeezing bottle caps onto Coke bottles was too much to ask. So let's
put it on the network. Believe it or not, these perfect little happy worker controllers have
received IP addresses. Stop me if you've heard this one before. What could possibly go
wrong? And yes, as I mentioned above, not only do they have IP addresses, often with
public presences on the Internet, again, things that are just supposed to get their job
done, just leave them alone. They're working. But they are all being protected by the
same, now well known, cryptographic key.

Last Thursday, the U.S. CISA warned of a critical vulnerability, giving it a 10 out of 10,
which is a hard score to earn, that 10. You can get to 9.8 without trying that hard. But
getting a 10, it's like the Olympics. So that allows hackers to remotely connect to Logix
controllers and from there alter their configuration or applicable code.

Page 8 of 28Security Now! Transcript of Episode #808

CISA stated that the vulnerability requires a low skill level for exploitation. Quoting them,
they said: "The vulnerability tracked as CVE-2021-22681 is the result of the Studio 5000
Logix Designer software making it possible for hackers to extract a secret encryption
key." And they didn't put "secret" in quotes, but, you know.

Leo: Semi-secret.

Steve: Yeah. We wanted it to be secret. So could you please, let's keep it a secret,
everybody. Let's agree. "This key is hard-coded into both Logix PLC controllers and
engineering stations, and verifies communication between the two devices. A hacker,"
they're writing, "who obtained the key could then mimic an engineering workstation and
manipulate PLC code or configurations that directly impact a manufacturing process." It's
just why must we put everything on the Internet, Leo. We just, you know...

Leo: Because it's there, Steve. Because it's there.

Steve: But people's garage doors are on the Internet. And, I mean, if it moves, hook it
up. Give it an IP address.

Leo: That's it.

Steve: Oh, my lord.

Leo: My garage door is on the Internet. Is that a bad thing?

Steve: I really didn't mean to pick on you, Leo.

Leo: It makes it easy to open it from anywhere.

Steve: On the other hand, I should have said, of course your garage door is on the
Internet.

Leo: Of course it is.

Steve: We know your front door is on the Internet.

Leo: No, no, no. Well, it is. The camera. Yeah, yeah, yeah.

Steve: I know. I know.

Leo: You're right. You're right.

Page 9 of 28Security Now! Transcript of Episode #808

Steve: Okay. So VMware's got some problems.

Leo: Uh-oh.

Steve: I mean, it's not their fault. They did things responsibly. As we know, there are
companies that get notified of a problem, and they don't fix it for a long time, and they
force the people who notify them to release the information for the benefit of the world
since the company refuses to do anything until apparently made to do so. That didn't
happen here. What happened was a very bad flaw was found in the entire population of
VMware's vCenter servers. VMware could do nothing but patch it; right? Like here,
everybody update your VMware vCenter systems. Unfortunately, they're a big target.

And the bad guys got right on this. As a consequence, hackers are currently mass
scanning the Internet in search of VMware servers that have not yet patched this newly
disclosed code execution, remote code execution vulnerability which carries a severity
rating of 9.8 out of 10. As I said, 9.8 you can get. To hit 10, you've got to really be doing
something.

Leo: You've got to be good. You've got to be really good.

Steve: Yeah. So the VMware problem is CVE-2021-21972. It's a, as I said, remote code
execution vulnerability. vCenter is an application for Windows or Linux used by admins to
enable and manage virtualization of large networks. Within a day of VMware issuing a
patch for this very bad problem, proof-of-concept exploits appeared from at least six
different sources. The severity of the vulnerability, combined with the availability of
working exploits for both Windows and Linux machines, immediately motivated hackers
to scramble to find vulnerable servers.

Troy Mursch, a researcher with Bad Packets, wrote: "We've detected mass scanning
activity targeting vulnerable VMware vCenter servers." He said that the BinaryEdge
search engine - which we know is sort of another version of Shodan. The BinaryEdge
search engine found almost 15,000 vCenter servers exposed to the Internet, while
Shodan searches revealed about 6,700. The mass scanning is aiming at identifying
servers that have not yet installed the patch.

So the flaw is just about as bad as it gets. It allows a hacker with no authorization to
upload files to vulnerable vCenter servers that are publicly accessible over port 443,
which as we know is TLS, HTTPS. Successful exploits will result in hackers gaining
unfettered remote code execution privileges in the underlying operating system. The
vulnerability stems from a lack of authentication in the vRealize Operations plugin, which
unfortunately is installed by default. So they're all going to have it.

In their blog posting, Positive Technologies, who discovered and responsibly privately
reported the flaw to VMware, wrote: "In our opinion, the RCE (Remote Code Execution)
vulnerability in the vCenter Server can pose no less a threat than the infamous
vulnerability in Citrix." And here they're referring to CVE-2019-19781, which was widely
implicated in the mass of ransomware attacks on hospitals, those early ones, back in
2019.

They said: "The error allows an unauthorized user to send a specially crafted request,
which will later give them the opportunity to execute arbitrary commands on the server."
So they're being a little bit cagey because they don't want to give away everything.
They're being responsible still. They said: "After receiving such an opportunity" - you

Page 10 of 28Security Now! Transcript of Episode #808

know, on the other hand, right, six public exploits with full source are available. So the
cat's out of the bag.

"After receiving such an opportunity," they wrote, "the attacker can develop this attack,
successfully move through the corporate network, and gain access to the data stored in
the attacked system, such as information about virtual machines and system users. If
the vulnerable software can be accessed from the Internet" - which of course is the case
in vCenter systems, those 15,000-plus of them - "this will allow an external attacker to
penetrate the company's external perimeter and also gain access to sensitive data. Once
again," they write, "I would like to note that this vulnerability is dangerous, as it can be
used by any unauthorized user."

So, yeah, we got the message. Again, it's one of those races against time, essentially.
One day after this patch was released, six proofs of concept existed, and mass scanning
began. So my mantra has been make sure you are maintaining an open line of
communication with the vendors of all the front line equipment that you're maintaining
and make sure this doesn't go into a, yeah, we do these on Friday sort of mailbox, but
really comes to the attention of somebody who it may be necessary to get out of bed or,
yes, reboot a server that you'd rather not reboot because you're going to have to kick
everybody off that's currently using it. But boo-hoo. This thing needs to get fixed now.
So this is one of those.

And there's just, you know, there isn't any way around this. They had to release the
patch. The only thing they could do was to hope that the news got out, that the people
who are in responsible positions would respond to it instantly, inside of the timeframe
required to reverse-engineer it and for the bad guys to start scanning. Who knows how, I
mean, and this is going to typically be a larger company running a VMware vCenter. They
have a huge percentage of install base. I saw that it was like 80% market share at the
high end of this kind of virtualization up in the high fortune companies.

So those are the targets that the ransomware guys want. So no surprise that this was,
you know, not only was it simple to execute once you had the proof of concept code,
obviously it's simple to reverse engineer because it only took a day. But the target was
juicy. The target set would also be juicy, targets of opportunity. So this thing just had
everything.

Last week - I want to share with our listeners, and I think everyone will get a kick out of
it - I mentioned that one troublesome machine owned by a tester in Germany was again
causing my new code some trouble. Back in the earlier ReadSpeed Benchmark
development days, I was worried about wearing out my welcome with him because, like,
he had a problem. And the only thing I could do was to produce a series of test releases
in what was ultimately a futile attempt to zero in on the trouble and fix it. I mean, I
added auditing code that was spitting out like leaving breadcrumbs as it went. And then
they just disappeared. And it's like, okay. And then I would try something else, and I
would zero in on where the breadcrumbs disappeared, you know, did everything I could
remotely by just giving him test after test after test to try and run and then report on
what happened.

Then, miraculously, his system started working. And of course that always makes me
nervous because if you don't really do something to fix a problem, then that miracle
might choose to reverse itself at any point. And sure enough, when I moved the new
code over into SpinRite and released the first test releases of it there, it no longer worked
on his system. So I had purchased one of the very same old Gigabyte motherboards from
eBay. And it came last week. So, and I may have had it, in fact, but hadn't - what?

Leo: You got it.

Page 11 of 28Security Now! Transcript of Episode #808

Steve: Oh, yeah, yeah. In fact, I have...

Leo: Such dedication. I can't believe it.

Steve: This is, oh, that's standard operating procedure for me. I've got controllers and
drives and motherboards. And a lot, almost everything I can do just by sort of looking at
the symptoms, looking at an audit, and then making a good guess. And then the guy will
say, yay, it works now. It's like, congratulations. Like, okay, good. Whew. But sometimes
it's just nothing I can do. So I put the motherboard in an ATX case that I had.

Anyway, I thought I'd give our listeners a sneak peek into this microdrama because it
demonstrates a bit about the process of debugging code and serves as a beautiful
example of the weird sorts of things that we face in the real world where code which is
born in the lab actually needs to function in the real world eventually. And as it turns out
I now know I could never have figured this out remotely. I mean, I would have thought
he was nuts. I mean, I just wouldn't have known what to think because, even with the
machine sitting in front of me, what I saw made absolutely no sense.

The problem was occurring in a simple routine which copied the contents of a disk sector
buffer from high XMS memory above 1MB down into traditional x86 segmented memory
below 1MB. Should be a piece of cake. But the machine went into that subroutine, and it
never came back, never came out. So, okay. At least now I had apparently located the
location of the problem that Chris and his machine in Germany was having. So I fired up
my debugger. And I followed the processor into that simple subroutine.

As we've talked about a lot, one of the reasons I find the Intel chips enjoyable to
program, and also why I never want to program a RISC chip, an ARM-based architecture,
for example, is that the Intel chips have a CISC architecture, Complex Instruction Set
Computer, CISC, C-I-S-C. The ultimate example of a CISC ISA, an ISA, Instruction Set
Architecture, was probably the DEC PDP-11 and the VAX machines. They were designed
back at a time when a lot of code was still being written in their assembly language. And
when compiler design was still sort of a nascent art, I mean, those were the early days.
So the chips themselves presented a sort of high-ish level language at the assembly
language, at the machine language, to the people who were going to program them.
They wanted to make it pleasant.

Okay. So for example, the Intel x86 architecture includes an instruction that I used in
that subroutine. It's a byte-range copy instruction that no self-respecting RISC chip
would ever abide. They'd be like, what? We're not copying a range of bytes. We do one
thing really well. And if you want more of that, you've got to ask for it. But not Intel. So
the starting address of the source range is placed into the chip's SI register, SI standing
for Source Index. I'm not kidding. And the starting address of the destination range to
copy to is placed into the chip's DI register, DI standing for Destination Index. And the
number of bytes to be copied is placed into the CX register, C as in Count.

Then a single instruction, like one byte opcode instruction is executed, which causes the
heavily microcoded Intel chip, or actually in this specific case an AMD processor, which is
a Phenom II that was on this Gigabyte motherboard, to fetch a byte from where the SI
register points, store it to where the DI register points, increment both the SI and DI
registers so that they will now each be pointing to the next byte in their ranges, then
decrement the CX register. If the CX register has not just been decremented to zero,
then repeat. Copy the next byte and so on.

Page 12 of 28Security Now! Transcript of Episode #808

So essentially, by executing a one-byte instruction, after setting things up by putting
specific pointers into specific registers, the Intel will copy a block of data from one place
to another. So I'm explaining all this because as I single-stepped the processor,
instruction by instruction, watching it like put the data for S into the SI register, no
problem. Put the data into the DI register. That worked. Store the 512-byte count into
CX. Yup. I then stepped into that byte range copy instruction, and nothing happened. It
was as if the instruction was taking forever to execute. It just went into the debugger.
The debugger didn't come back to me. So one of the tricks we all learned, and Leo, I
know you know, back in the early days of the PC, and a system appeared to lock up, was
to hit the Num Lock on our keyboards a few times.

Leo: Forgot about that.

Steve: And, oh, yeah, I still do it. Of course I'm still living back in this world.

Leo: It doesn't do anything; does it?

Steve: Well, it turns the light on and off. And so if the Num Lock key on your keyboard
works, that means that keyboard interrupts are being serviced.

Leo: Oh, okay, good.

Steve: That the BIOS has seen that you hit Num Lock, and it sends a message to the
keyboard to turn that light on or off. So it sort of says, oh, look.

Leo: I'm not dead yet.

Steve: Yeah. It's just a flesh wound.

Leo: Yes.

Steve: So essentially back then it meant that there was still some hope. But if you hit
Num Lock a few times, and the light didn't change, then probably not even the famous
three-finger salute of CTRL+ALT+DELETE would bring the system back. It was time to
reach over for the Reset button in order to get things restarted. But in this case Num
Lock was still toggling. So the debugger showed that it executed this instruction, and
nothing happened. Yet Num Lock was toggling.

And Chris had originally also noted that the little ASCII character spinners, if you may
remember, when the ReadSpeed Benchmark is running, I cycle the characters at the
ends of the title banner, which are vertical bars. I switch them to left-leaning slashes,
then minus signs, then right-leaning slashes, then back to vertical bars. So it makes little
spinners. He commented that they were still spinning. His system stopped working right
in the middle, but they were still spinning.

Leo: Interesting.

Page 13 of 28Security Now! Transcript of Episode #808

Steve: Which told me again that meant that the timer interrupt was being serviced
because the timer interrupts at 18.2 Hz, and so I count several of those, and then I
advance the ASCII character to the next position. So things were still working. The
processor was still running. But it was also apparently...

Leo: [Crosstalk] loop, apparently; right? Just stuck in a loop.

Steve: Well, yeah. It was apparently just sitting at that single instruction, doing nothing.
Now, Intel chips have some built-in debugging support. And this debugger works using
that. It sets a hardware breakpoint on the instruction after the one that's about to be
stepped through. That way, when the processor comes out on the other side of the
instruction, the debugger retains control. It updates the screen to show the current
processor state, and you can see where you are. But that breakpoint was never being
tripped because the AMD Phenom II processor was apparently never stepping out of that
instruction to the next one.

So I stared at that for a while, thinking, what? It made no sense. It had to work. And I
think I mentioned last week that Chris had observed that everything worked just dandy if
he booted from a diskette. But not when he booted from a USB thumb drive. And in my
subsequent experimentation before rolling up my sleeves, I learned that all was okay
when I booted from any mass storage device. And in subsequent testing, I determined
that it wasn't actually what booted the machine, but from where the program was run.

In other words, this instruction, this one instruction would hang if I booted from hard
drive, but then ran the code from a USB thumb drive. Yet everyone else who has been
testing this code all along is also typically booting and running from the code from their
USB thumb drives. Yet no one else was seeing this problem. Which was really not
surprising since this problem could not possibly be happening in the first place. Yet it
was.

Okay. So because what I was seeing was impossible, I decided to decompose that fancy
single-instruction Intel block copy into a series of individual instructions that would
accomplish the same thing. You know, do my own loop, rather than use this built-in
looping behavior of the Intel chip. And again, I single-stepped. And again, the system
hung at one indivisibly simple instruction, when the processor attempted to load the
accumulator register with the contents of the location in upper memory.

So now we're just at a move instruction. There's nothing more basic, more simple than a
move instruction; right? You've got to move data from one place to another. It never
completed. But also it never completed only when the code was run from USB. And DOS
doesn't load anything on the fly. It's not doing anything fancy. It's old school. It loads
everything first into RAM before it starts to run the program. So how could there be any
memory of where the byte came from, the evil byte, the move instruction that it just
wasn't going to run.

So anyway, I have no idea why running from USB could possibly matter. The only thing I
can conclude is that there's some bizarre subtle bug in that old AMD Phenom II
processor. The Intel x86 architecture provides us with six segmentation registers. I was
using the default, which is DS, which stands for Data Segment. So what I was seeing was
impossible. In a Hail Mary, I changed the code to use the FS segment register, and
everything worked perfectly every time. So henceforth, none of SpinRite's code will ever
set the data segment to zero and attempt to use it to access 32-bit flat memory storage.
Doing that should work. And notice that it works for everybody else. And as far as we

Page 14 of 28Security Now! Transcript of Episode #808

know, everywhere except on a Gigabyte motherboard with an AMD Phenom II processor,
when the code is loaded from USB. Welcome to my world.

When I published a test release for Chris to try, and also to check my own sanity, it did
indeed fix his trouble, too. And someone else who had never reported in, but who had
been watching, wrote to say that his similar AMD Phenom II-based Gigabyte system had
also never worked before, but now it does. So anyway, I thought our listeners might get
a kick out of a peek inside a bit of last week's work. Most problems that I track down and
resolve teach me something that I don't know. That's what makes this journey so
interesting. I can't say that I learned anything from this problem except what not to do
for magical mysterious reasons, which I will never do in the name of achieving total
compatibility. Once upon a time, back in '04...

Leo: Way back.

Steve: Yeah, when SpinRite 6.0 was released, one of the reasons it developed such a
strong following was that it just always worked. I am now in the process of wrestling this
new and soon-to-emerge SpinRite 6.1 back into that state, where it just always works.
And when I'm finished, it will.

Leo: I'm surprised, given that bug, that you still prefer segmented memory
architectures and x86 to the flat memory model of ARM processors. I mean, why do
you prefer x86?

Steve: I wouldn't say that I prefer it.

Leo: Okay.

Steve: And in fact I'm having so much...

Leo: I mean, this bug comes from a segmented memory flaw of some kind.

Steve: Yes, yes, yes. What I appreciate is that it is often the case that you don't always
need access to 32 bits of stuff. That is, you know, that's 4.3GB. Most things fit within
64K, which means you could access them with 16 bits. But if you were going to access
them with 16 bits, then you need to choose which 16 bits in the system. And that's what
segmentation does is it gives you an offset to the beginning of a 64K range of bytes. And
it's efficient, you know, in terms of back once upon a time, when efficiency actually
mattered, you know, people say, Gibson, I can't believe your Benchmark is 13K. It's like,
yeah, 13,000 bytes. And a lot of that is text because I wanted to say something on the
screen.

The point is we've completely lost touch with how efficient code can be. And I understand
I'm the weirdo here. But these are the problems that I like to solve. But at the same
time, Leo, I am so anxious to move to this new 32-bit platform for SpinRite 7. I'm just - I
cannot wait to get there because it will be nice. I've been in programming Windows, as
we know, since I stopped programming SpinRite. And I've really gotten spoiled by just
being able to point to something, go, yeah, I want that. Even though it's a long way
away, I still want it.

Page 15 of 28Security Now! Transcript of Episode #808

Leo: And we should point out Steve is one of the handful of people that addresses
his own registers and pays attention to this stuff. Almost everybody else is using a
higher level language that you can completely ignore what's going on at the
processor level. It's just you, Steve, let's face it.

Steve: Yes. I know. I know.

Leo: But as a connoisseur of assembly language, I respect your opinion on this
because you're the last man standing. Congratulations. No, I'm sure there are plenty
of people, especially in the gaming industry, who are writing the most time kind of
code.

Steve: Oh, and Leo, the guys who do those demos, the demos that fit within a certain
size and do this amazing stuff with graphics, holy crap are - well, and hackers. Hackers
are all living here because this is where they are.

Leo: Right.

Steve: Is down in buffer overruns and register contents and things. So, yeah, at the
application programmer level, nobody needs to worry about this. But anything you do
where it actually is necessary to know exactly what's going on, well, exactly what's going
on is in the registers. That's where the action is.

Leo: This man lives in the registers. That's the truth of it. Yeah.

Steve: Okay.

Leo: And actually it's really valuable to understand that, by the way, because there
are subtle bugs that happen in higher level languages that it's helpful to understand
why, especially like numeric overruns and things, where you understand that's a 32-
bit integer or a float. And you can't get that precision or that kind of thing.

Steve: Well, and what would you do? If you had a higher level language, and you
executed an instruction that was supposed to copy something, and it just went in and
never came back.

Leo: Happens all the time. I sent you a wonderful article, I don't know if you read it,
about debugging the loading code in Grand Theft Auto IV, which is notoriously
horrific, like...

Steve: Oh, yeah. You sent that to me for reading while I was recovering from my second
vaccine shot, yeah.

Page 16 of 28Security Now! Transcript of Episode #808

Leo: Yeah. So this guy, it's famous, GTA IV takes sometimes 20 minutes before you
can play the game. I mean, it's insane. And it turns out it's because they're parsing a
big JSON file using sscanf(), and it's got a subtle bug in it. And it's actually not a
bug, but it's something that causes - it's an inefficiency.

Steve: Right.

Leo: You probably, at the level you're coding, pay no attention to efficiency, the Big
O notation or anything like that. That doesn't come up; does it?

Steve: Oh, yeah. Remember when I was doing the LRS, the Longest Repeated Strings?

Leo: Oh, that's right.

Steve: I was working on that. That was a serious...

Leo: Linear versus geometric expansion of the time, yeah.

Steve: P vs. NP sort of problem.

Leo: Right, right, right. Okay. So you do pay attention to that stuff. Usually in
assembly it's probably not - doesn't come up that much. All the loops are unrolled
and everything, you know. You're not recursing or anything.

Steve: Yeah. I dropped, in fact, I used our own podcast, something I learned from the
podcast. I had in the original ReadSpeed code, I was hashing the boot sectors of drives
with SHA - I don't remember now. Maybe SHA-1 because I really didn't need that much.
But it was still a rather large algorithm.

Leo: Right.

Steve: And when I moved into SpinRite, I was upset that just a hash function was taking
up so much space.

Leo: I love it.

Steve: So I switched to the FNV function, FNV-1, which we talked about on the podcast,
which simply multiplies a byte by a specific prime, and it's what the hackers were using
in the ransomware to create a high-speed, very small, lightweight hash function. SpinRite
now has that.

Leo: Interesting. Yeah, I remember that, yeah.

Page 17 of 28Security Now! Transcript of Episode #808

Steve: And I saved myself several K worth of hash lookup tables by switching to a very
economical, basically FNV. It doesn't have to be cryptographically strong. I just needed a
good hash. And now I've got one that takes up no space.

Leo: Well, that was kind of the bottom line in this fix. This guy, by the way, didn't
have access to the source code. He disassembled - that was the other thing. I
thought about you.

Steve: Good for him.

Leo: He disassembled it and did it all by hand. He didn't have a symbol table or
anything, was able to figure it out, modify the DLL. And it really came down to the
fact that these folks at Rockstar had written their own JSON parser, which is
horrifically inefficient. And bottom line is use libraries. Don't try to - you're nuts to
write your own JSON parser. That's just nuts. Why do that? He fixed it. He got about
70% improvement in loading time.

Steve: Nice.

Leo: Yeah. We'll see if Rockstar pays any attention. Anyway, that's why I sent it to
you. I thought while you're curled up on the couch you'd enjoy this tale of
disassembly.

Steve: Perfect story.

Leo: All right, Steve. On we go.

Steve: One little bit of news. Paul, @whatsupdoc114, shot me a note that Exchange
Servers all over the world were currently under attack. I did a little quick checking, and
sure enough, today on March 2nd, Microsoft just released seven remote code execution
vulnerability patches for Exchange Server, the most three recent, I think 2019, 2016,
and 2013 or 12. Anyway, I did a little digging, and I found a note. The risk is still
extremely high.

The exploit allows an attacker to perform a Pre-Auth RCE and essentially end up with the
ability to run commands with system privileges since most customers don't use split
permissions or have not performed the steps required to remove excessive permissions
from Exchange Servers and Active Directory, it's likely that the attacker may be able to
gain highly privileged rights in your on-premises domain. So it must be, I don't know
where the - oh, yeah, you found it. Emergency patches for four - and actually there are
seven that I saw.

Leo: Yeah, so this is out of date. This is Dan Gooden writing at Ars Technica. He's
always very good. He pushed this about an hour ago. It was four, and it's now up to
seven zero-days in Exchange Servers.

Steve: Wow.

Page 18 of 28Security Now! Transcript of Episode #808

Leo: That's not good. And by the way, Microsoft says hackers have been using it on
behalf of the Chinese government. So that's not good. That's not good. Well, thanks
for the update. That's why people listen. We don't normally do breaking zero-days.

Steve: No.

Leo: But when they happen, we've got to; right?

Steve: Yup. And so here is some news that is just - it's beyond distressing. Okay. So
Criteo, I guess that's how you pronounce it, C-R-I-T-E-O, is a leading tracking company.
They send website administrators with whom they already have a tracking and analytics
relationship an email. It asks them to make a quick change which will "only take two
minutes," and it will "adapt their website to the evolution of browsers." Which is to say
that it will work around their own website's visitors' attempts to block tracking and to
reenable tracking to their site's visitors in a "more optimal way."

Then in this email, after presenting instructions for the site's webmaster about how to
make the required change, which will indeed only require a couple of minutes, in the
particular instance of email that I saw, they conclude with, if this is not done, you may
lose 11.64% of your sales, 11.53% of your gross turnover, and 20.82% of your
audience. And this brings us...

Leo: Geez.

Steve: ...to some recently published research, which explores just how prevalent and
pervasive this new technique has grown over the past few years. The group of five
researchers will be presenting their work at the 21st Privacy Enhancing Technologies
Symposium (PETS) 2021 this July. But we have the research now. I'm going to quickly
read the abstract of their paper and then explain in detail because this is really important
and horrifying what this means.

Their abstract says: "Online tracking is a whack-a-mole game between trackers who
build and monetize behavioral user profiles through intrusive data collection, and anti-
tracking mechanisms, deployed as a browser extension, built into the browser, or as a
DNS resolver. As a response to pervasive and opaque online tracking, more and more
users adopt anti-tracking tools to preserve their privacy. Consequently, as the
information that trackers can gather on users is being curbed, some trackers are looking
for ways to evade these tracking countermeasures.

"In this paper we report on a large-scale longitudinal evaluation of an anti-tracking
evasion scheme that leverages CNAME records to include tracker resources in a same-
site context, effectively bypassing anti-tracking measures that use fixed hostname-based
block lists. Using historical HTTP Archive data we find that this tracking scheme is rapidly
gaining traction, especially among high-traffic websites.

"Furthermore, we report on several privacy and security issues inherent to the technical
setup of CNAME-based tracking that we detected through a combination of automated
and manual analysis. We find that some trackers are using the technique against the
Safari browser, which is known to include strict anti-tracking configurations. Our findings
show that websites using CNAME trackers must take extra precautions to avoid leaking
sensitive information to third parties."

Page 19 of 28Security Now! Transcript of Episode #808

Okay. So here's the story. So first of all, what are CNAME records? They're not something
we've had much occasion to talk about in the past. I have a feeling that's going to
change. But on the other hand, DNS is something we're pretty much always talking
about. A CNAME record is simply another type of DNS record. As we know, a DNS
"A" (standing for Address) record resolves a specific domain name to a dotted quad IPv4
address. Similarly, a DNS "AAAA" record resolves a specific domain name into an IPv6
address.

An SMTP email server might query a domain, like for example GRC, for any MX records
which will point to one or more IP addresses, which are used for email servers for that
domain. And for various reasons, a domain's text records might be queried for
information, like to provide the public key used to check a domain's anti-spam
signatures. So although DNS's primary purpose is to look up and return IP addresses, it's
also a nifty general purpose distributed Internet directory, capable of containing and
returning all sorts of other information. And another of those types of queries is the
CNAME.

CNAME (C-N-A-M-E) stands for Canonical Name. Whereas an "A" query returns an IPv4
address, a CNAME query returns another domain name. The domain name being queried
is considered to be an alias, and what's returned is the canonical name for that alias. And
CNAME records are handled specially by DNS. As Wikipedia explains, CNAME records are
handled specially in the domain name system and have several restrictions on their use.
When a DNS resolver encounters a CNAME record while looking for a regular resource
record, it will restart the query using the canonical name instead of the original name.
The canonical name that a CNAME record points to can be anywhere in the DNS, whether
local or on a remote server in a different DNS zone. So you can think of it as a pointer. It
is a pointer to a different DNS name.

So here's what's evil, and what that email above was asking website admins to do, and
which many - these guys counted more than 10,000, I'll get to that in a minute -
websites have done. They were asked to say, okay, say at example.com, to place a
CNAME record into their site's DNS such that some arbitrary but specified subdomain of
example.com, like say dyzxrdb.example.com, would be an alias for the canonical name
web-trackers-R-us.com. So what that does exactly is anytime someone wants to look up
the IP address for dyzxrdb.example.com, their assigned DNS resolver, which is
performing the DNS resolution for them, will query the example.com domain's name
servers for that subdomain. But because that subdomain record is a CNAME record,
that's what will be returned, not an IPv4 IP address, but what will be returned to the
querying DNS resolver is a CNAME result with that web-trackers-R-us.com as its answer.

The resolving DNS server that understands that is the canonical name for which
dyzxrdb.example.com was an alias will then ask web-trackers-R-us.com silently, like on
its own, because this is all built into DNS, for its IP. Whereupon the user's DNS resolver
will return that IP as the IP of dyzxrdb.example.com to the person, the browser, the web
browser that asked for it. From the user's perspective, they asked for the IP of a
subdomain of example.com, and they received an IP. But due to prior collusion between
the website they're visiting and web-trackers-R-us.com, the IP they received was for
web-trackers-R-us.com. From the standpoint of the user's browser, this is an in-domain,
same-domain query. So third-party cookie restrictions do not apply. And the user's web
browser will treat this query as a subdomain of the website being visited.

Okay. So what we have so far is a horrifically sneaky means of deliberately overriding a
user's wishes for anti-tracking by websites that feel that they have a superior right to
track and obtain leverage from their visitors. But believe it or not, it's much worse.
Cookies set on specific domains are accessible to, and sent to, anyone who queries their
subdomains. This means that by colluding in this way to allow an untrustworthy third-
party tracking entity to pretend to be within a website's domain...

Page 20 of 28Security Now! Transcript of Episode #808

Leo: Ooh.

Steve: Yes, Leo.

Leo: That's sneaky as hell.

Steve: Well, the cookies being held...

Leo: So it's not a third party, doesn't appear to be a third-party cookie, even though
it is.

Steve: Correct. It doesn't appear to be a third-party query, a third-party request. It
actually is. But this means the cookies being held by the browser of visitors to that site
will be sent to that third-party entity because the browser won't know any better. The
website's visitors' logon session authentication cookies will be sent outside of that
domain...

Leo: Oh, that's not good.

Steve: No, to untrusted and, I would argue, untrustworthy third-party tracking and
analytics companies.

Leo: Wow, that's really not good. You're sending your Facebook login cookie to
them, in effect.

Steve: Exactly.

Leo: They can post as you. Geez.

Steve: Yes. The fact that it's done over HTTPS provides no security. Anyone at any of
those tracking, advertising, analytics firms of which 13 have now been identified by the
researchers could trivially impersonate any user of any website who didn't explicitly log
off, and who therefore still have a valid authentication cookie. It is an unbelievable
breach of trust and abuse of web technology.

I ran across a wonderful website that allows us to play with and explore our own
browsers' cookie and subdomain handling to understand exactly this issue. And I made it
this week's Security Now! podcast shortcut of the week, so it's https://grc.sc/808
because this is podcast number 808. That will bounce you over to
scripts.cmbuckley.co.uk/cookies.php.

And I played with it this morning because I was wondering whether my Firefox 86 with
its new full "Total Cookie Protection" that I opened with fully enabled would help. No. It is
not blocking any of this leakage because these are not third-party cookies. These are
subdomain cookies. What this cool site, again, grc.sc/808, it allows you to set cookies in

Page 21 of 28Security Now! Transcript of Episode #808

different domains and subdomains of that site and see which ones are returned. It's a
very cool little page. So I'm sure that our listeners will get a kick out of it.

Okay. So how widespread is this behavior? Thankfully, these researchers have gone to
some effort to unearth the extent of this currently spreading industry-wide website
collusion with the tracking industry. It's not difficult. You just, for example, resolve any
subdomains of the primary domain that you receive from a website. You do that DNS
lookup for yourself as if you were a recursive DNS resolver, and you see whether you
receive a CNAME record that points to any one of the 13 current providers of this form of
CNAME tracking. And you've got something up on the screen, I see, Leo, from that page.

Leo: So this site, basically what I've done is I've told cmbuckley.co.uk to set my
cookie. And it returns my cookie, even though it says it looks like a first-party
cookie, but it's really my third-party cookie. Is that what's happening here?

Steve: Well, so and then, if you click down below in that text in the lines below, see that
they have an a.something.

Leo: Yeah, a script. Yeah, oops.

Steve: So that's a subdomain of the root domain, and you can see it receive your cookie.

Leo: Right, same thing, there's a cookie, yeah. And then let's zoom in on this.

Steve: Yes. And so that's the point is that because it's a subdomain, you set the cookie
on the root domain, subdomains all get the same cookies.

Leo: I see.

Steve: So with the collusion enabled by the CNAME, some random gibberish dot,
like .amazon.com, it would get Amazon.com's cookies. All the amazon.com cookies you
have would go to the third party. It's that bad, Leo. It's unbelievable that this has been
happening. Who would know?

Leo: And of course they're saying, oh, well, we'll never do that. We just want to
know who's visiting your site. This is not - this is for you. We would never steal your
authentication cookies.

Steve: Right. This is for your benefit. We're making more relevant ads. And it keeps the
Internet free, and it wouldn't be free otherwise.

Leo: This is one way people are getting around ad blockers and trackers is looking -
if everything looks first party, they don't block it. None of these block if it's first
party; right?

Page 22 of 28Security Now! Transcript of Episode #808

Steve: Right.

Leo: So if you can make a third-party ad or a third-party cookie look...

Steve: Be a subdomain, yup, yup. Okay. So the researchers found this technique
currently in use on a total of 10,474 websites. And of the top 10,000 websites overall,
9.98%, one in 10 of the top 10,000 are currently employing this form of CNAME tracking,
cloaking, subdomain collusion.

Leo: Are they sending the cookies to themselves or to this third party?

Steve: That's the problem. There's no distinction, Leo.

Leo: We don't know. We don't know.

Steve: No, no, no. I mean, we do know. There's no distinction. Our browsers, what that
page you were playing with demonstrates is our browsers send cookies set on the root
domain to their subdomains.

Leo: Right.

Steve: That's the way browsers are designed. They're supposed to do that. Once upon a
time you could start the root domain with a dot. It'd be like .amazon.com. And that
would say don't share these root cookies with my children, with our subdomains. That
behavior went away years ago. It's now ignored by browsers, even if they still see it.

Okay. So their research furthermore observed what they termed "targeted treatment of
Apple's Safari web browser" where the advertising technology company I mentioned
before, Criteo, who mailed the letter I opened with, switched specifically to CNAME
cloaking to bypass Safari's otherwise strong privacy protections.

And it's worse. Data leaks. Significant cookie data leaks were found on 95% of the sites
that use that CNAME tracking, so 95% of the 10,474 sites, all of which sent cookies
containing private information such as full names, locations, email addresses, and even
session authentication cookies to trackers of other domains without the user having any
knowledge or control. Again, remember that the entire presumption of cookies is that
bad and abuse-prone as they may be, at least they stay within the domain that set them.
At least their content, whatever it might be, even if it's a user's actual name and real
world identity, bad practice as that would be, at least it remains between those two
parties.

So while cookies can be used for tracking, the only data that's ever returned to a domain
is something that that domain had previously sent. Thus by definition it's not secret to
that domain. But now, thanks to the horrendous abuse of CNAMEs being used to
deliberately confuse cookie domains, data is being sent with queries by the user's
browser to entities who never set that data in the first place. That tracker never set the
authentication cookie, which is how the user is staying logged in. They never put the
user's name and location and email address in the cookie. The domain did, figuring,

Page 23 of 28Security Now! Transcript of Episode #808

okay, yeah, it's bad practice, but what the hell. It's going to stay here. It's only between
the users' browser and us. And, oh, look, we're HTTPS now, so no one can spy on it.

CNAMEs break that so that all the information which was private between the users'
browser and the domain is now being sent to any subdomains, and this subdomain is
now a tracker, an analytics company. As the researchers noted, that data which should
never be exposed to any third party often contains information that tracking firms would
die to have and leverage. And now they don't have to. They just need to get websites to
collude with them by adding a CNAME record to that domain's DNS.

There is a bit of good news. The only good news here is that good old Gorhill's uBlock
Origin add-on is at least partially effective at spotting and blocking accesses to these
despicable subdomains. I have in the show notes a table from the research, Table 1,
titled "Overview of the analyzed CNAME-based trackers," based on the HTTP Archive
dataset from October 2020.

The number one tracker is a company called Pardot, P-A-R-D-O-T. Unfortunately, it's
owned by Salesforce. That had the highest number, just shy of 6,000 detected websites.
5,993 detected websites were using Pardot, a Salesforce company which, I mean, we all
know Salesforce, they say "powerful business-to-business marketing automation," stating
that "Pardot offers powerful marketing automation to help marketing and sales teams
find and nurture the best leads, close more deals, and maximize ROI." And they are the
number one user and abuser of this technology.

Number two position is Adobe Experience Cloud that is also doing this. And then there's a
list of all 13 of these companies. But in a note on this table, the researchers did observe
that Pardot is being blocked because the third-party script being sourced from
Pardot.com is being blocked, that is, by uBlock Origin; and that, if that script was not
blocked, then CNAME abuse would succeed. The researchers had the following to say
about countermeasures against CNAME.

They said: "In response to a report that a tracker was using CNAMEs to circumvent
privacy block lists, uBlock Origin released an update for its Firefox version that thwarts
CNAME cloaking. The extension blocks requests to CNAME trackers by resolving the
domain names using the browser's own browser.dns.resolve API to obtain the last
CNAME record, if any, before each request is sent." And by that they mean CNAME
records can actually chain; right? Because it's a pointer that causes the DNS to go to
another domain, that one could have a CNAME that could point it somewhere else. So it
wants to follow the chain to the last CNAME record. Then it checks whether the domain
name matches any of the rules that it is blocking. So it's got a robust CNAME chain
following a technology in uBlock Origin.

He says: "Subsequently, the extension checks whether the domain name matches any of
its rules in its block lists, and blocks requests with matching domains while adding the
outcome to a local cache." And then they said: "Although uBlock Origin also has a version
for Chromium-based browsers, the same defense cannot be applied because Chromium-
based browser extensions do not have access to an API to perform DNS queries. As such,
at the time of this writing, it is technically impossible for these extensions to block
requests to trackers that leverage CNAME records to avoid detection.

"uBlock Origin for Chrome, which does not have an explicit defense for CNAME-based
tracking, still manages to block several trackers. This is because the requests to the
trackers matched an entry in the block list with a URL pattern that did not consider the
hostname. Unfortunately, it is fairly straightforward for the tracker to circumvent such a
fixed rule-based measure by randomizing the path of the tracking script and analytics
endpoint, as is evidenced by the various trackers that could only be blocked by the
uBlock Origin version on Firefox."

Page 24 of 28Security Now! Transcript of Episode #808

And you see that in this table. They have a column for uBlock Origin where Firefox was
successful, and uBlock origin where Chrome was successful. uBlock Origin on Firefox,
because it actually is doing CNAME block lists, is able to be more effective.

Leo: So it's interesting because I use Firefox and NextDNS. So it looks like I have
pretty full coverage if I do both of those.

Steve: Yup. NextDNS is also a good CNAME blocker, yes.

Leo: They're kind of like a piehole in the sky.

Steve: Right.

Leo: Yeah, I love that.

Steve: So the researchers wrap up their research with the following conclusion. They
said: "Our research sheds light on the emerging ecosystem of CNAME-based tracking, a
tracking scheme that takes advantage of a DNS-based cloaking technique to evade
tracking countermeasures. Using HTTP Archive data and a novel method, we performed a
longitudinal analysis of the CNAME-based tracking ecosystem using crawl data of 5.6
million web pages. Our findings show that unlike other trackers with similar scale,
CNAME-based trackers are becoming increasingly popular, and are mostly used to
supplement 'typical' third-party tracking services.

"We evaluated the privacy and security threats that are caused by including CNAME
trackers in a same-site context. Through manual analysis we found that sensitive
information such as email addresses and authentication cookies leak to CNAME trackers
on sites where users can create accounts." In fact, I didn't mention this, but in their
report they took a handful of these sites where you can create an account. They created
accounts. They tracked and verified the leakage. They used the leaked authentication
tokens to impersonate themselves, and it all worked. So this is not a theoretical problem.
And this is, remember, 10% of the top 10,000 websites are doing this now. It's just...

Leo: It's so amazing.

Steve: It's just horrible.

Leo: Yeah, horrible.

Steve: So what we have is a real mess. No form of explicit tracking was ever designed
into our use of the web. It happened as an unintended consequence of single advertising
services having appearances on multiple hosting websites. And those providers were
allowed to set cookies in our browsers just like their originally intended first-party
cousins. I would argue we should have stopped it then. We should have just said no. But
the trouble was this tracking was effectively invisible. Users didn't see it. It went
completely unseen by the public. And it wasn't the public's responsibility to stop it. I
would argue it was technologists' job to say no because it was the technologists who

Page 25 of 28Security Now! Transcript of Episode #808

were abusing this technology. But of course those wearing white hats didn't say
anything. No one said no.

Then, when an awareness began to emerge, and third-party cookies were being
threatened and sometimes disabled or deleted, browser fingerprinting emerged as a
means for allowing what had grown into a tracking industry to retain its grip on our
browsers and on us. Since fingerprinting was more difficult to defend than cookies, it
received a stronger pushback from browser vendors who didn't like the idea that cookies
were being bypassed as a means of tracking their users and that this kind of slimy
fingerprinting was going on behind the scenes.

And now we have what is perhaps the ultimate abuse in tracking technology. Thanks to
explicit collusion among a growing number of websites, third parties, those same tracking
third parties and analytics firms, are being allowed to receive a website's cookies,
apparently without the website knowing or caring. Our logged-in session authentication
cookies are being received by third-party tracking entities with whom users have no
relationship; and with whom they would surely refuse to share their logon session and
various other possibly personal details if they were made aware of what the technology
they are using was doing behind their backs.

But once again, end users have no idea. They just use this, and they assume that people
who do know are going to do something, that they're being protected by people who are
going to be responsible. This has been going on for years and has been growing slowly,
and it needs to be fixed. As with the original abuse of third party cookies, where all this
began, it cannot be the responsibility of those who do not understand this to say no. It's
got to be those of us who do understand this to push back in every way possible. So I am
so glad that this research has shined a bright light on this next generation of tracking. It
needs to be shut down immediately. But as I said, it takes those who are technologically
savvy in the web industry to make it happen. The sooner the better.

Leo: Yeah. It's amazing. But I think that this is the cat-and-mouse battle between
tracking companies and advertising companies and ad tech companies and users
who just reasonably say "Don't track me, bro." And they're going to pull out all the
stops, including posing as a first-party site.

Steve: Yeah. It's going to take legislation. That's the only thing that can happen is that
we just have to say, sorry, you just can't track people. I mean, imagine right now...

Leo: Well, awareness is good because the market can respond. The market can, I
mean, I want to know what these top 10 sites are so we can say something.

Steve: Yeah, 10%.

Leo: Yeah.

Steve: Yeah. So 1,000 of the top 10,000 sites are doing this.

Leo: So if those are well-known sites, and I think they probably are, those names
need to be revealed so that we can say something. Because that's how you, you

Page 26 of 28Security Now! Transcript of Episode #808

know, that's not okay. They think they're getting away with it because nobody will
ever notice.

Steve: Right. Exactly.

Leo: Well, now we know, yeah. Wow. I'm glad I use NextDNS. That's all I can say.
And uBlock Origin.

Steve: That would have been a good name for this podcast, Leo. "Well, now we know."

Leo: So now you know the rest of the story.

Steve: Now we know.

Leo: That's pretty much every podcast with Steve Gibson. It's a great informative
thing, and I'm glad you're here to hear it. And tell your friends; you know? If they're
smart enough to understand what we just said, anyway. Some people maybe this
would go [sound effect], but - most people. That's the problem is this stuff is
[crosstalk].

Steve: Yeah, we should mention NextDNS, I mean, because if your DNS, if the people
you are sending those queries to are on the ball, then they're the ones that will be asking
example.com for the value of this CNAME. They will see that it is a domain that is a
tracking domain, and they'll just say, oops, sorry.

Leo: And it's my guess that if Quad9 and Cloudflare and the others don't already
protect against this, they could, and I imagine they'd be implementing that pretty
quickly. I'm just pleased that this NextDNS.io, it's free for the first 300,000 queries.
But what happens is you get to that number pretty quickly because you put it on
everything. I have it - it's running on my network.

Steve: And god, in this day and age, 300,000 queries is like lunch.

Leo: Goes like that. So I buy it, but it's not, it's like two bucks a month or
something. It's fairly inexpensive. And boy, is it well worth it. It really - it does a
whole lot more than that. Lot of security stuff. NextDNS.io.

Steve Gibson is at GRC.com, and that's where you'll find so many great things like
this show: 16Kb audio versions for the bandwidth impaired; full human-written
transcripts that are great to read along while you listen. You can also use them for
searching. And of course 64Kb audio, all at GRC.com. While you're there, pick up
SpinRite. Release 6 is current. But as you can see, Steve's working pretty darn hard
to get 6.1 out the door. So buy v6 now, you'll get 6.1 free when it's available. You'll
also get to participate in the early testing and so forth. So it's a good thing.
Everybody needs SpinRite. ShieldsUP! there, lots of other stuff for free. He's a very
generous soul. I have copies of the show, as well, or we do. There is no "I" in TWiT.
Actually, there is.

Page 27 of 28Security Now! Transcript of Episode #808

Steve: But it's a lowercase "i."

Leo: It's a lowercase "i." It's just a humble "i," a little "i." It's at TWiT.tv/sn. That's
where you'll find audio and video, too, actually. There's also a YouTube channel you
can watch dedicated to Security Now!. What else? You can subscribe in your favorite
podcast application. Simple enough. And that way you'll get it the minute it's
available of a Tuesday afternoon.

We do the show around 1:30 Pacific, 4:30 Eastern, 21:30 UTC. You can watch us
stream it live, if you like to watch the behind-the-scenes chitchat at TWiT.tv/live.
Watching live, chat live at irc.twit.tv. After the fact, our forums are at
www.twit.community, no third-party tracking cookies involved, as far as I know. I
guess it's possible that - I'll check the CNAME real quick, just to make sure. No, of
course not.

And same thing with our Mastodon instance. Everybody's saying, "Where's Steve?" I
said, "It took me years to get Steve to use Twitter. Just relax, okay? We'll move him
over to Mastodon in time." It's the federated open source version of Twitter. Our
Mastodon server that's a federated server is at TWiT.social and gives you access to
all the other Mastodon servers, as well. TWiT.social. I'll see you in there.

Thank you, Steve. Have a wonderful week. I'm glad you got your second Fauci
Ouchy. We wouldn't want to lose you.

Steve: No, ready to go. Bring it on.

Leo: Good. We'll see you next week on Security Now!.

Steve: Bye.

Copyright (c) 2014 by Steve Gibson and Leo Laporte. SOME RIGHTS RESERVED

This work is licensed for the good of the Internet Community under the
Creative Commons License v2.5. See the following Web page for details:
http://creativecommons.org/licenses/by-nc-sa/2.5/

Page 28 of 28Security Now! Transcript of Episode #808

