
Security Now! #724 - 07-23-19

Hide Your RDP Now!

This week on Security Now!

This week we start off with something bad that we unfortunately saw coming. We then look at

the changing security indication feedback in browsers, the challenge of keeping browsers

compatible with important but non-standards-compliant web sites, the failure and repair of

Incognito browsing mode, the possibility of a forthcoming "super Incognito mode" for Firefox, a

new super-fact TLS stack written in the Rust programming language, Microsoft's promised open

source release of their voting machine election software, yet another widely deployed, exposed

and exploitable Internet server. Then a quick bit of miscellany, some terrific SQRL news, and we

look at a recent and quite sobering report from Sophos about attacks on exposed RDP servers.

Real Facebook Cert signed by DigiCert Fake Facebook Cert signed by KZ

Security News

Welcome to Kazakhstan! - Please check your privacy at the border.

We'll start off with one from our “Unfortunately we did see this coming” department. I received a

significant number of tweets and private messages containing variations on the theme of "This is

what you've been predicting, Steve" and such ... though it was less a prediction than a worry

about something that COULD happen, which would be bad. And now it has.

So, what have I been worrying about? Turing to our picture of the week, on the left we see the

authentic Facebook certificate with the Common Name "*.facebook.com" and a long list of

affiliated domains listed in its Subject Alternative Name (SAN) field. And that authentic

certificate was issued by and signed by my favored certificate authority, DigiCert.

And, sadly, on the right we see a certificate that is in every way a clone-copy of Facebook's

authentic certificate containing the same "*.facebook.com" common name and the identical list

of affiliated domains. But the Common Name of the signer of THIS fraudulent certificate reads

"Security Certificate".

And what we now know is that the government of Kazakhstan has begun officially requiring that

its own CA root certificate be installed into the web browsers of its citizens. And, of course, we

know why. It's so that it can perform man-in-the-middle interception, decryption and perhaps

alteration of the HTTPS-encrypted traffic moving within its borders. That fraudulent Facebook

certificate was discovered being used to impersonate Facebook.

The first indication of this was a "bugzilla" report #1567114 titled: "MITM on all HTTPS traffic in

Kazakhstan"

https://bugzilla.mozilla.org/show_bug.cgi?id=1567114

Since today all Internet providers in Kazakhstan started MITM on all encrypted HTTPS traffic.

They asked end-users to install government-issued certificate authority on all devices in every

browser: http://qca.kz/

Actual results: MITM attack: https://i.imgur.com/rFEjXKw.jpg

Message from Internet provider, requires to install this CA: https://i.imgur.com/WyKjOug.jpg

https://groups.google.com/forum/#!msg/mozilla.dev.security.policy/wnuKAhACo3E/cpsvHgcuDw

AJ

Matthew Hardeman / 18 Jul

Other recipients: wth...@mozilla.com, mozilla-dev-s...@lists.mozilla.org If the government of

Kazakhstan requires interception of TLS as a condition of access, the real question being asked

is whether or not Mozilla products will tolerate being used in these circumstances.

Your options are to block the certificate, in which case Mozilla products simply become

unusable to those subject to this interception, or not block the certificate.

I certainly think that Mozilla should not distribute the MiTM root or do anything special to aid in

its installation. I believe policy already makes clear that NO included root (commercial or

Security Now! #724 1

https://bugzilla.mozilla.org/show_bug.cgi?id=1567114
http://qca.kz/
https://i.imgur.com/rFEjXKw.jpg
https://i.imgur.com/WyKjOug.jpg
https://groups.google.com/forum/#!msg/mozilla.dev.security.policy/wnuKAhACo3E/cpsvHgcuDwAJ
https://groups.google.com/forum/#!msg/mozilla.dev.security.policy/wnuKAhACo3E/cpsvHgcuDwAJ

government) is allowed for use in MiTM scenarios and I believe that policy should be held firm.

I do believe that as it is manually installed rather than distributed as a default that it should

continue to override pinning policy.

This is an accepted corporate use case today in certain managed environments. The dynamic

is quite different for an entire people under an entire government, but the result is the same:

One has to choose whether to continue serving the user despite the adverse and anti-privacy

scenario, or if one simply won't have their products be any part of that.

Much has been said about the TLS 1.3 design hoping to discourage use cases like this, but the

reality is what I always suspected: some enterprises or governments actually will spend the

money to do full active MiTM interception.

Let's posit what might happen if Mozilla made their products intentionally break for this use

case.

Further, let's stipulate that every other major browser follows course and they all blacklist this

or any other nation-state interception certificate, even if manually installed.

Isn't the logical outcome that the nation-state forks one of the open-source browser projects,

patches in their MiTM certificate, and un-does the blacklisting? I think that's exactly what

would happen. The trouble is, there's no reason to expect that the fork will be maintained or

updated as security issues are discovered and upstream patches are issued. We wind up with

an infrequent release cycle browser being used by all these users, who in turn get no privacy

AND get their machines rooted disproportionate to the global population.

I do definitely support a persistent UI indicator for MiTM scenarios that emphasizes on-screen

at all times that the session is being protected by a non-standard certificate and some sort of

link to explain MiTM and the risks.

The Kazakh government first tried to have all its citizens install a root certificate three and a half

years ago in December 2015. And that sounded familiar, so I imagine it caught our attention and

we talked about it at the time. Back then, the government ruled that all Kazakh Internet users

had to install the government’s root certificate by January 1st, 2016.

However, the ruling was never implemented because the government was sued by several

organizations, including ISPs, banks, and even foreign governments, who feared this would

weaken the security of all internet traffic (and the related business) originating from the country.

And, of course, they were, and still are, completely correct. At that time, in December 2015, the

Kazakh government also applied with Mozilla to have its root certificate included in Firefox by

default, but Mozilla declined.

But now, starting last Wednesday, July 17, the Kazakhstan government has started intercepting

all HTTPS internet traffic inside its borders. Local internet service providers (ISPs) have been

instructed by the local government to force their respective users into installing a government-

Security Now! #724 2

issued certificate on all devices, and in every browser. And, as we know, once installed, the

certificate will allow local government agencies to decrypt users' HTTPS traffic, look at its

content, encrypt it again with their certificate, and forward it its destination.

To make this happen, local ISPs have started forcing their customers to install the government's

root certificate by redirecting them to intercept web pages containing instructions on how to

install the government's cert in their respective browsers, whether desktop or mobile device.

In a statement posted on its website, the Kazakh Ministry of Digital Development, Innovation

and Aerospace said only internet users in Kazakhstan's capital of Nur-Sultan will have to install

the certificate; however, users from all across the country reported being blocked from accessing

the internet until they installed the government's certificate. Some users also received SMS

messages on their smartphones about having to install the certificates, according to local media.

Ministry officials said the measure was "aimed at enhancing the protection of citizens,

government bodies and private companies from hacker attacks, Internet fraudsters and other

types of cyber threats."

It's true, as we know, that this sort of interception could be used benignly to filter traffic for

malware. But as we know, it's equally possible to scan and surveil traffic for whatever other

content the government or other MITM agency chooses.

Google, Microsoft, and Mozilla are discussing a plan of action about dealing with websites that

have been (re-)encrypted by the Kazakh government's root certificate. So it’s going to be very

interesting to see how this develops. What seems most likely, is that browsers and other devices

will adopt some form of prominent visible warning. Since the industry's best browsers are now

all open source, private labeling a "Kazakhstani" browser containing only Kazakhstan's root

certificate would not be an insurmountable task. Though maintaining it and keeping it current

would be a big job. The fact is, most users will not know by themselves what's going on. But

their press will likely quickly inform them. On the other hand, what choice will they have?

Lose your privacy, or lose the Internet.

And it's certainly likely the other repressive and authoritarian governments are watching this

experiment with significant interest.

Some later follow-up reporting has somewhat muddied the water. Caleb Chen, writing for the

PrivateInternetAccess blog, notes that: “A Kazakh official clarified on July 19th, 2019 that the

installation of the certificate was voluntary and not a prerequisite to accessing the internet.”

Unfortunately, Caleb provided a link to the page https://rus.azattyq.org/a/30064788.html which

is written in either Kazakh and Russian, neither of which I can read.

What do tech-savvy Kazakhs think about this? The Mozilla bug thread contains a posting from

one: “I am a citizen of Kazakhstan. If Mozilla/Google Chrome developers see this message, I

kindly ask you to consider blocking the above mentioned certificate and any access to your

browsers for the certificate holders. If this certificate didn’t pass Web trust audit, it can be the

same as presented in 2016. So blocking it from the major world browsers is the only chance for

Security Now! #724 3

https://rus.azattyq.org/a/30064788.html
https://rus.azattyq.org/a/30064788.html
https://rus.azattyq.org/a/30064788.html

Kazakhs to avoid MITM attacks and keep at least some privacy rights (meaning that if blocked/

blacklisted, the government will have to call back the certificate as it was done in 2016). […] If

the certificate is not blacklisted, but only the visual message will pop up warning users about

untrusted certificate – it will not help since majority of citizens (especially elderly ones) simply

will not pay enough attention to such [a] message.

And, our illustrious crypto professor, Mattthew Green weighed-in via Twitter:

And speaking of indicators and browser security & privacy...

Starting in October with Firefox #70, Mozilla will be prominently marking all HTTP, non-HTTPS

pages as "not secure" as Chrome does now.

What Mozilla has been doing with Firefox was only showing "not secure" indicators on HTTP

pages where it probably mattered more, meaning pages which accepted user content containing

forms or login fields. However today the percentage of sites serving HTTPS has surpassed 80%.

So their thinking is that users don't need good news for what has rapidly become the default --

being secure -- but rather a warning when, for some reason, a site is not secured by HTTPS.

Firefox developer Johann Hofmann wrote: "In desktop Firefox 70, we intend to show an icon in

the 'identity block' (the left hand side of the URL bar which is used to display security / privacy

information) that marks all sites served over HTTP (as well as FTP and certificate errors) as

insecure."

Firefox has had configurable behavior flags viewable and configurable on its about:config page

since December of 2017. Those flags are still present in the current stable version of Firefox, and

users can enable them to preview this forthcoming indicator:

The flags are:

● security.insecure_connection_icon.enabled - show a broken lock on HTTP sites

● security.insecure_connection_text.enabled - show the "not secure" text on HTTP sites

● security.insecure_connection_icon.pbmode.enabled - show a broken lock on HTTP

sites in Private Browsing

Security Now! #724 4

● security.insecure_connection_text.pbmode.enabled - show the "not secure" text on

HTTP sites in Private Browsing

Since it can now be difficult to find a non-HTTPS site for testing, I have one. Although my new

GRC link-shortener service of course supports HTTPS, and it always redirects users to secure

pages, I didn't see any reason not to allow it to accept an incoming link over HTTP. So you can

always check to see what you browser shows for non-secured HTTP sites by going to the root

page of GRC.SC… http://grc.sc/

And speaking of Firefox's about:config page...

Mozilla's Dan Callahan, writing about the changes in the latest Firefox 68, explained about some

of the subtleties of browser behavior which were required to allow Firefox to operate on websites

that were apparently written to expect some specific quirks of some non-Firefox browser...

https://hacks.mozilla.org/2019/07/firefox-68-bigints-contrast-checks-and-the-quantumbar/

Dan writes: "Keeping the Web open is hard work. Sometimes browsers disagree on how to

interpret web standards. Other times, browsers implement and ship their own ideas without

going through the standards process. Even worse, some developers intentionally block certain

browsers from their sites, regardless of whether or not those browsers would have worked.

At Mozilla, we call these “Web Compatibility” problems, or “webcompat” for short.

Each release of Firefox contains fixes for webcompat issues. For example, Firefox 68

implements:

 Internet Explorer’s addRule() and removeRule() CSS methods.

 Safari’s -webkit-line-clamp CSS property.

In the latter case, even with a standard line-clamp property in the works, we have to support

the -webkit- version to ensure that existing sites work in Firefox.

Unfortunately, not all webcompat issues are as simple as implementing non-standard APIs from

other browsers. Some problems can only be fixed by modifying how Firefox works on a specific

site, or even telling Firefox to pretend to be something else [via a lie in the User-Agent header]

in order to evade browser sniffing.

We deliver these targeted fixes as part of the webcompat system add-on that’s bundled with

Firefox. This makes it easier to update our webcompat interventions as sites change, without

needing to bake those fixes directly into Firefox itself. And as of Firefox 68, you can view (and

disable) these interventions by visiting about:compat and toggling the relevant switches.

Our first preference is always to help developers ensure their sites work on all modern browsers,

but we can only address the problems that we’re aware of. If you run into a web compatibility

issue, please report it at webcompat.com.

Security Now! #724 5

http://grc.sc/
https://hacks.mozilla.org/2019/07/firefox-68-bigints-contrast-checks-and-the-quantumbar/

Being a bit more Incognito

We've probably all encountered teaser paywall websites that allow a limited number of articles to

be viewed per month by non-subscribers. This sort of feels like at workable compromise between

fully open and fully closed sites. They are clearly hoping that you'll find value there and finally be

annoyed when that one article you really sent to read fades out into a notice that the site

requires a monthly fee for you to keep reading.

This, of course, begs the question: How are they counting the number of pages you've visited?

The answer could be some form of fancy fingerprinting. But we know that browser fingerprints

are not unique. Many other web users will coincidentally have a browser with the same

fingerprint. And these sites are not attempting to block rocket scientists from having access,

only casual visitors... Who have their browser's 1st-party domain cookies set in the universal

“enabled” state.

So it wasn't long before people who want to read that one additional article, but didn't want to

join up, discovered that switching to their favorite browser's "Incognito" or "Private Browsing"

mode would make this possible. Since private browsing deliberately does not record 1st-party

domain cookies, a user of an Incognito browser is suddenly unknown and always starts out with

a zeroed "prior articles" counter since they appear as an unknown and "un-cookied" visitor.

And in this cat and mouse world, just as didn't take long for the use of the private browsing trick

to become widespread through independent discovery and word of mouth, neither did it take the

web developers long to figure out a way, at least in the case of the Internet's #1 web browser,

Chrome, to detect when someone was visiting their paywalled site “Incognito.”

For example, if you visit any article on “The Washington Post” news site using Chrome’s

Incognito mode, you'll be greeted with the message: “We noticed you’re browsing in private

mode. Private browsing is permitted exclusively for our subscribers. Turn off private browsing to

keep reading this story, or subscribe to use this feature, plus get unlimited digital access.”

But, wait... what?!?! The idea of being IDENTIFIED as someone who is visiting “Incognito” sort

of puts the lie to the whole Incognito thing, right? It's like “Wait a sec... You're not supposed to

know anything about me, including, and perhaps even importantly, that that I have deliberately

chosen not to have you know anything about me, including that.”

This occurred to the engineers at “The Goog” so they decided to do something about it. It turns

out that Chrome's Incognito mode disables Chrome's FileSystem API as part of Chrome's effort

to prevent the user's activities from leaving any lasting traces. Websites figured out that this

could be easily checked with a bit of JavaScript running on the page, so that's what generates

that “please disable your Incognito mode to receive a limited amount of free stuff” message.

Consequently, at the end of this month, on July 30th, we're going to be getting Chrome 76 with

a FileSystem API that no longer gives away the browser's Incognition. And just in case

publishers then go searching around for some next method to detect private browsing, since

Google really does wish to avoid having its Incognito visitors flagged, “The Goog” have stated

that: “Chrome will likewise work to remedy any other current or future means of Incognito Mode

detection.”

Security Now! #724 6

And speaking of Private Browsing...

Firefox might be getting "Super Private Browsing" in the not-to-distant future, a la, TOR!

Due to the fact that the TOR browser is a descendant of Firefox, there have been various

projects and grants awarded to look into the possibility of adding a "TOR mode" to Firefox. This

is exciting because setting up a TOR session take some doing, and also because wrapping all

outbound traffic in a multi-layered successively-encrypted "onion" and then having that traffic

bounce three or four times around TOR nodes while each successive layer is stripped and

decrypted and then forwarded on to the next TOR node means that "surfing the web through

TOR" is not for the impatient. But... The idea of being able to just "flip a switch" the way we

currently do when we turn on private browsing would be VERY appealing. It would allow Firefox

users to briefly and quickly drop a cone of silence over their online activities when they need

some real anonymity, then just as easily lift the cone to return to regular high-speed browsing.

During a recent meeting of the core Tor team, developers, volunteers and invited guests in

Stockholm, to discuss plans, milestones, deadlines, and other important matters... The idea of a

TorMode Add-on for Firefox was proposed, discussed and considered:

https://trac.torproject.org/projects/tor/wiki/org/meetings/2019Stockholm/Notes/FirefoxTorUplift

AndTorModeAddOn#TorModeAdd-onproposal

"There is an idea to, in the future, have Firefox use Tor in private browsing mode, or an a new

extra-private mode. That will take a lot of engineering work and buy-in. To help smooth the

path, there is a proposal for a "Tor mode" addon. This would not be packaged with the browser

by default, but would be something that users could download from addons.mozilla.org to give

them a "Tor mode" button or similar. It would allow users to experience what an eventual full

integration with Tor could look like. It could also help gauge interest by counting downloads,

etc.

acat (Alex Catarineu) has demonstrated how to compile tor to WASM. This would allow

packaging all the necessary tor code inside the addon itself, without a dependency on external

binaries. The addon would still need to be a privileged addon.

What's a privileged add-on? A privileged addon is one with elevated privileges compared to a

standard WebExtension. It can call XPCOM functions, for example. A privileged addon needs to

be signed by Mozilla, or something, but the idea for this proposal is to have it produced and

distributed by Mozilla anyway, so that's not a problem.

The addon would configure the browser to use tor as a proxy, as well as setting various prefs

to prevent proxy bypasses and resist fingerprinting, much like those set by Tor Browser.

Discussion of visual options for UI. Clicking the Tor-mode button would probably open a new

window that uses a dedicated profile. This is because some of the prefs that the addon has to

set are global to a profile, not to a window or a tab.

What to do about HTTP? The feeling is that it's dangerous to pass unauthenticated HTTP

through exit nodes. Packaging NoScript does not provide the best experience either. The

easiest solution is to enforce (require) HTTPS when in Tor mode.

Security Now! #724 7

https://trac.torproject.org/projects/tor/wiki/org/meetings/2019Stockholm/Notes/FirefoxTorUpliftAndTorModeAddOn#TorModeAdd-onproposal
https://trac.torproject.org/projects/tor/wiki/org/meetings/2019Stockholm/Notes/FirefoxTorUpliftAndTorModeAddOn#TorModeAdd-onproposal

So... This is well in advance of any timeline or release number target... But it's neat that the

Tor gurus are thinking along these lines. As for myself, beyond experimenting with TOR just

for the experience, I've never used it seriously. But I, for one, would add the Tor add-on to my

browser for use during those times when being truly stealthy would be useful.

“Rustls” (Rust-TLS) outperforms OpenSSL in nearly every way

A tiny and relatively unknown TLS library written in Rust (which is a language we’ll be talking

about a bit more in a minute) outperformed the industry-standard OpenSSL library in almost

every major category.

The benchmarks were performed by Joseph Birr-Pixton, the author of the RUSTLS library.

Joseph's findings showed that Rustls was 10% faster when setting up and negotiating a new

server connection, and between 20 and 40% faster when setting up a client connection. These

days most TLS traffic relies on resuming previously negotiated handshakes. But here, too, Rustls

outperformed the aging and creaky OpenSSL, being between 10% and 20% faster in resuming a

connection on the server-side, and being between 30 and 70% quicker to resume a client

connection. Moreover, Rustls fared better in bulk data transfer performance. Joseph's

measurements showed that Rustls could send data 15% faster than OpenSSL, and receive it 5%

faster as well. And just to put a cherry on top, Rustls uses only half of the memory consumed by

OpenSSL.

Since it has been a core of the Internet, we have spoken of OpenSSL often. It IS old and

creaky. And we're seeing more and more alternatives appearing. OpenSSL has been the old

workhorse where new ideas were first developed and proven as SSL evolved and acquired

features through the years, and then made the straddle from SSL to TLS. And we all know that

anyone using a brand new TLS stack should initially do so with extra suspenders because TLS is

a complex protocol and you don't want to find your pants down around your ankles.

That said, Rust is probably well suited to this sort of application. Unlike C and C++, Rust has

security designed into the language itself to avoid memory-related security bugs. And it's

appearing that tasks coded in Rust are now generally outperforming C and C++.

Rust was designed by Mozilla, from the ground up to prevent memory management-related

bugs, which are usually at the heart of most security flaws in C and C++ applications.

Although the Rust project was initially ridiculed, it is now being adopted at a rapid pace, and the

once-controversial decisions behind its safety-first design have served to make the language a

proven success. The Firefox and Brave browsers rely on Rust components, and large companies

like Cloudflare, Dropbox, Yelp, and npm, have adopted it for production systems. The Tor Project

is experimenting with Rust, and Facebook's recently launched Libra cryptocurrency will be using

it. And last but not least, Microsoft has just, this past week, announced plans to explore using

Rust as a replacement for C and C++.

The language is also popular with developers. Rust has come out on top as the most popular

programming language in StackOverflow's developer survey for the past five years, in 2016,

2017, 2018, and 2019.

Security Now! #724 8

https://www.rust-lang.org

Performance: Rust is blazingly fast and memory-efficient: with no runtime or garbage collector,

it can power performance-critical services, run on embedded devices, and easily integrate with

other languages.

Reliability: Rust’s rich type system and ownership model guarantee memory-safety and

thread-safety — and enable you to eliminate many classes of bugs at compile-time.

Productivity: Rust has great documentation, a friendly compiler with useful error messages, and

top-notch tooling — an integrated package manager and build tool, smart multi-editor support

with auto-completion and type inspections, an auto-formatter, and more.

I wanted to mention all this, first to put Joseph's RUSTLS library on everyone's radar in case

there might be some interest and need. And also because computer languages are fun. I plan

to accelerate my development of SpinRite v7 -- to which I plan to add a large array of features

-- by using the low-level driver code I will first create for the SpinRite v6.x series. But I plan to

implement the next UI and its underlying technology in something that's faster for me to

prototype and experiment an work with. I was thinking of Python for that, but I'll definitely be

taking a look at Rust. (And, no, Leo... I won't be using LISP.)

Microsoft announces "ElectionGuard" during last week's Aspen Security Forum

Last week, Microsoft demonstrated a new open source technology named ElectionGuard, which it

said can be used to secure modern electronic voting machines.

This is not, thank God, the beginning of Microsoft balloting machines based on Windows 10.

Microsoft stated that it had no plans to release commercial voting machines. Instead, they said

they planned to release the ElectionGuard software on GitHub, under an open-source license,

later this year.

Microsoft described the technology behind ElectionGuard as being relatively simple and centering

around a few core principles (which sounds good so far)...

● Voters receive a tracking code.

● The tracking code on an election website to verify that their vote has been counted and that

the vote has not been altered.

● But the tracking code reveals nothing about the voting, so it will not allow third-parties to

see who voted for whom.

● ElectionGuard uses a “homomorphic encryption” encryption system developed in-house at

Microsoft under Senior Cryptographer Josh Benaloh.

● Homomorphic encryption is a very cool technology that allows the counting of votes while

keeping the votes encrypted.

● The ElectionGuard SDK also supports third-party "verifier" apps to independently check if

encrypted votes have been counted properly and not altered.

● Verifier apps were created for voting officials, the media, or any third party interested in the

voting process.

Security Now! #724 9

https://www.rust-lang.org/

● ElectionGuard machines can also produce paper ballots, as a printed record of their vote,

which voters can place inside voting boxes, like old-fashioned votes.

● ElectionGuard also supports voting through accessibility hardware, such as Microsoft Surface

or the Xbox Adaptive Controller.

And ElectionGuard has already attracted interest, as well it should. Microsoft hopes voting

machine makers will use its new ElectionGuard software for their products. According to

Microsoft, the SDK has been warmly welcomed by some voting machine vendors already. Tom

Burt, Microsoft Corporate Vice President, Customer Security & Trust said: "We previously

announced that we have partnerships with suppliers that build and sell more than half of the

voting systems used in the United States. Today, we're excited to announce that we're also now

partnering with Smartmatic and Clear Ballot, two of the leading voting technology vendors, and

Dominion Voting Systems is actively exploring the inclusion of ElectionGuard in their offerings."

This is exactly the correct direction for our future voting systems. As I’ve said before, it’s fine

for the likes of Diebold (dee-bold) to manufacture and sell the hardware, but they way they work

and what they do cannot be allowed to remain proprietary secrets any longer. The entire

notion that some random hardware manufacturer has some kind of secret sauce to protect our

votes is just utter nonsense. So it takes someone with a solid reputation -- exactly like Microsoft

Research -- to offer an answer at no cost to the hardware vendors. Yay!

And what would a weekly installment of Security Now! be without the announcement

of yet-another remotely exploitable vulnerability in a widely-used, high-profile and

easily discoverable Internet server??

Yes… More than one million currently-online instances of the popular open-source ProFTPD

server, present in distributions of Debian, SUSE, Ubuntu and many other Linux and UNIX-like

systems, is wide open to remote compromise, including remote code execution, as a result of an

arbitrary file copy vulnerability.

Security Now! #724 10

ALL ProFTPd versions up to and including 1.3.6 (the latest version which was released back in

2017) are impacted by the vulnerability which enables remote attackers to execute arbitrary

code without the need to authenticate and with the user rights of the ProFTPD service.

The problem arises from ProFTPD's "mod_copy" module which implements additional commands.

The ProFTPD site explains: "The mod_copy module implements SITE CPFR and SITE CPTO

commands (analogous to RNFR and RNTO), which can be used to copy files/directories from one

place to another on the server without having to transfer the data to the client and back." So, in

other words, SITE CPFR and SITE CPTO are commands that any anonymous, non-authenticated

FTP client which connects to a ProFTPD server, can use to command the server to perform

server-side file copy operations.

http://bugs.proftpd.org/show_bug.cgi?id=4372

A ProFTPD user reported the following via email: the mod_copy module's custom SITE CPFR

and SITE CPTO commands do not honor <Limit READ> and <Limit WRITE> configurations as

expected.

To reproduce, just enable the anonymous user example that is configured in the Debian

default proftpd.conf:

<Anonymous ~ftp>

 User ftp

 Group nogroup

 UserAlias anonymous ftp

 RequireValidShell off

 MaxClients 10

 DisplayLogin welcome.msg

 DisplayChdir .message

#Limit WRITE everywhere in the anonymous chroot

<Directory *>

 <Limit WRITE>

 DenyAll

 </Limit>

</Directory>

</Anonymous>

Command: ftp proftptest.domain.org (on linux, using a regular ftp client)

Login as anonymous here. You normally can't upload files, because of the

DenyAll

site cpfr welcome.msg

site cpto malicious.php

Security Now! #724 11

http://bugs.proftpd.org/show_bug.cgi?id=4372

We’ve created a file named “malicious.php” with the contents of welcome.msg. That example is

probably not very useful, but it can be easily extended for RCE and similar things on many

setups. For example, many FTP setups allow file submissions by anonymous users for various

purposes. But that's ALL they can do. They can transfer a file into an "Uploads" directory but

that's it. Now, however, after uploading their own cleverly-crafted code, the remote user is able

to instruct the FTP server to copy that file to somewhere else in the system... which is really not

what you want remote unknown and unauthenticated FTP client users to be able to do.

Miscellany

From: Patrick Delahanty / Web Engineer - TWiT.tv

Hi Steve,

I've been making some simple Apple TV apps for some TWiT shows that have evergreen content

people like to watch even after the content has been rotated out of our podcast feeds. I've

released a Security Now app for Apple TV that uses the TWiT API to access content and lets

people watch or listen to every episode of Security Now going all the way back to the beginning.

http://twit.to/sntv

I hope your fans will enjoy it!

SQRL

Many projects are showing wonderful progress on Github...

● Scott White has "sqrl-ssp" working, a very nice pluggable implementation of the SQRL SSP

API written in Go.

● Paul Farrer has a reference implementation of the SSP API in 'C', which he closely translated

from mine in assembly language, so it's feature complete and supports several different TLS

stacks.

● Daniel Persson, who created the Android client and the Wordpress plug-in, both which then

evolved into very effective team efforts, is now working on "sqrl-libpam" a PAM (pluggable

authentication module) for Linux.

● Adam Lenda, working with PHP and SQRL, is currently working to add SQRL support to the

PHP Symfony application development framework.

● Jurgen Haas has SQRL for Drupal 8 in the works.

● Meanwhile, the Android, iOS and web browser extensions are rapidly nearing completion.

● I have finished the second of four SQRL documents. The first one was "SQRL Explained" and

this next one is titled "SQRL Operating Details." Before making it widely available I notified

those in GRC's NNTP newsgroup who have passed a very fine tooth comb through it for typos

Security Now! #724 12

http://twit.to/sntv

and grammatical mistakes. So I'll be revising the document starting tonight and I'll post it

widely. I'm now at work on the "SQRL Cryptography" document which will detail all of

crypto-glue that holds SQRL together, and the final document will be "SQRL On The Wire"

which will document the communications protocol. When these are finished we'll have both

top-down and bottom-up views of SQRL.

● And, last but certainly not least, I'm very excited to have been invited to present SQRL, in

late September, to two OWASP groups which will be meeting in Dublin, Ireland and

Gothenburg, Sweden. Both have graciously offered to cover the direct travel and lodging

expenses for Lorrie and me. (Lorrie would never forgive me if I went without her.) So I am

very much looking forward to that two months from now. I'll be at the OWASP meeting in

Dublin, Ireland on September 24th and then at the OWASP meeting in Gothenburg, Sweden

two days later on September 26th. They are Security Now listeners, and if they have room

I'd love to meet more of our listeners at those meetings. So, anyone interested should

contact the organizers of those OWASP chapters and inquire about attending.

Hide Your RDP Now!

Sophos: "RDP exposed: the wolves already at your door"

For the last two months the infosec world has been waiting to see if and when criminals will

successfully exploit CVE-2019-0708, the remote, wormable vulnerability in Microsoft’s RDP

(Remote Desktop Protocol), better known as BlueKeep.

The expectation is that sooner or later a BlueKeep exploit will be used to power some

self-replicating malware that spreads around the world (and through the networks it penetrates)

in a flash, using vulnerable RDP servers.

In other words, everyone is expecting something spectacular, in the worst possible way.

But while companies race to ensure they’re patched, criminals around the world are already

abusing RDP successfully every day, in a different, no less devastating but much less spectacular

way.

Many of the millions of RDP servers connected to the internet are protected by no more than a

username and password, and many of those passwords are bad enough to be guessed, with a

little (sometimes very little) persistence.

Correctly guess a password on one of those millions of computers and you’re in to somebody’s

network.

It isn’t a new technique, and it sounds almost too simple to work, yet it’s popular enough to

support criminal markets selling both stolen RDP credentials and compromised computers. The

technique is so successful that the criminals crippling city administrations, hospitals, utilities and

enterprises with targeted ransomware attacks, and demanding five- or six-figure ransoms, seem

to like nothing more.

Security Now! #724 13

 SamSam Dharma Matrix BitPaymer Ryuk

First appeared 2015 2016 2016 2017 2018

Active No Yes Yes Yes Yes

Infection vector RDP RDP RDP RDP RDP

All of which might make you think – there must be a lot of RDP password guessing going on.

Well, there is, and thanks to new research published by Sophos today, we can take a stab at

saying just how much.

Noting the popularity of RDP password guessing in targeted ransomware attacks, Sophos’s Matt

Boddy and Ben Jones and I, set out to measure how quickly an RDP-enabled computer would be

discovered, and just how many password guessing attacks it would have to deal with every day.

We set up ten geographically dispersed RDP honeypots and sat back to observe. One month and

over four million password guesses later we they switched off the honeypots, just as

CVE-2019-0708 was announced.

The low interaction honeypots were Windows machines in a default configuration, hosted on

Amazon’s AWS cloud infrastructure. They were set up to log login attempts while ensuring

attackers could never get in, giving us an unhindered view of how many attackers came

knocking, and for how long, and how their tactics evolved over the 30-day research period.

The first honeypot to be discovered was found just one minute and twenty four seconds after it

was switched on. The last was found in just a little over 15 hours.

Security Now! #724 14

Between them, the honeypots received 4.3 million login attempts at a rate that steadily

increased through the 30-day research period as new attackers joined the melee.

While the majority of attacks were quick and simple attempts to dig out an administrator

password with a very short password list, some attackers employed more sophisticated tactics.

The researchers classified three different password guessing techniques used by some of the

more persistent attackers and you can read more about them – the Ram, the Swarm and the

Hedgehog – in the whitepaper.

What to do?

RDP password guessing shouldn’t be a problem – it isn’t new, and it isn’t particularly

sophisticated – and yet it underpins an entire criminal ecosystem.

In theory, all it takes to solve the RDP problem is for all users to avoid really bad passwords. But

the evidence is they won’t, and it isn’t reasonable to expect they will. The number of RDP

servers vulnerable to brute force attacks isn’t going to be reduced by a sudden and dramatic

improvement in users’ password choices, so it’s up to sysadmins to fix the problem.

Security Now! #724 15

While there are a number of things that administrators can do to harden RDP servers, most

notably two-factor authentication, the best protection against the dual threat of password

guessing and vulnerabilities like BlueKeep is simply to take RDP off the internet. Switch off RDP

where it isn’t absolutely necessary, or make it accessible only via a VPN (Virtual Private

Network) if it is.

https://grc.sc/sn724

https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophos-rdp-exposed-the-thr

eats-thats-already-at-your-door-wp.pdf

~30~

Security Now! #724 16

https://grc.sc/sn724
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophos-rdp-exposed-the-threats-thats-already-at-your-door-wp.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophos-rdp-exposed-the-threats-thats-already-at-your-door-wp.pdf

